TOFFEE项目
文档更新影片研究下载赞助商联系


DOCUMENTATION 》 TOFFEE hardware selection guide

Language :: Portuguese

When you build a WAN Optimization device with TOFFEE the entire packet processing (data optimization) takes place in software layer or in other words more precisely Operating System kernel space. However if you have any compression or encryption hardware accelerator hardware card the parts of the TOFFEE packet processing modules can be offloaded to hardware layer and thus improving its efficiency.

But the focus and assumption in this guide is that you are using a generic computing platform such as PC/server/IoT device to build a WAN Optimization device with TOFFEE platform, since hardware offload option is only feasible for large OEMs and other such commercial equipment manufacturers. So it is important that based on your WAN speeds within which these TOFFEE devices are to be deployed, you need to choose your hardware specifications as suggested in this guide.

Understanding CPU Benchmarks:
Introducing TrueBench - a high resolution CPU benchmarking system:
TrueBench
TrueBench is an unique benchmarking system in which the core system performance and efficiency parameters are measured at extreme high resolution in the order of several million/billion µ-seconds for a given specific task. TrueBench is a part of The TOFFEE Project research. For more details: visit TrueBench

Applications(use-cases) of TrueBench:

  • building low-latency high performance networking devices
  • embedded/SoC CPU (platform) evaluation
  • server and datacenter hardware evaluation
  • new product design/architecture evaluation
  • scientific applications (such as HPC, Super-Computers, etc)

Choosing the CPU for your TOFFEE device:
Here is a definitive guide which will help you to choose the CPU for your TOFFEE WAN Optimization device. TOFFEE source-code is highly modular. It can scale-up or scale-down its optimization level based on your hardware and more precisely CPU processing potential. Having said that lets assume you have enabled all optimization levels. In that context here is the table which gives an idea to choose your CPU according to your deployment specific WAN network speeds:

NOTE: This table is derived after extensive trials, testing and research over several years. And as well a co-relation between CPU's benchmarks (such as TrueBench) single thread performance benchmarks vs standard multi-thread benchmarks vs TOFFEE's real-time performance during extensive high-load packet processing.

CPU / Hardware Specs TrueBench Score WAN Speeds
Raspberry Pi3 Model B 1.2GHz 64-bit quad-core ARMv8; 1GB RAM 1,310,619,137 <= 5-10Mbps
ARM Cortex-A53(ARMv8 64bit) (ODROID-C2) 1.50 GHz, Quad Core, ODROID-C2 - IoT single board computer(SBC) 949,003,080 <= 10-20Mbps
Intel Atom D525 1.80 GHz, Dual Core, 13 W TDP 874,076,069 <= 20-30Mbps
High-end Server:
Intel Xeon E3-1240 v3
91,632,198 <= 300-600Mbps
High-end Desktop:
Intel core i7 6700K
44,200,382 <= 700-900Mbps (1Gbps approx)

So in case if you are building your own WAN Optimization device (or in general any networking device), you can benchmark with TrueBench (as suggested in the TrueBench website) and submit me your results (screen output).

TOFFEE-DataCenter: For the same/similar above specs, TOFFEE-DataCenter should provide only half the performance (WAN speeds) as compared to TOFFEE. The reason being TOFFEE-DataCenter does user-space packet processing and it is lot more versatile, flexible and modular. Due to this TOFFEE-DataCenter is capable of optimizing the data far more than TOFFEE.

Choosing the RAM/memory for your TOFFEE device:
TOFFEE device just like any typical Linux system needs just minimum amount of RAM. The entire data processing of packets will take place in your RAM. By no means TOFFEE uses your harddisk (or any secondary storage) space for packet processing. So whether it is Gigabit WAN or within 100Mbps speeds, choose RAM which has around 4-8GB of overall capacity.

However to achieve maximum optimal performance especially for high-speed WAN links, I highly recommend you to choose RAM with maximum speed. Such as DDR4 (with 2.8GHz or so). This gives the best CPU<>Memory bus interconnect speeds and improves your packet processing capabilities of your TOFFEE device. This is also sometimes applicable not just TOFFEE hardware build, but any such network devices which deals with real-time data/packet processing.

Choosing server hardware for Gigabit speeds (1G/10G and so on):Here are some examples:

Lanner FW-8894 :: 1U High Performance x86 (Dual CPU) Network Appliance for Enterprise Firewall, UTM and IPS
Lanner FW-8894
Lanner FW-8894

Lanner NCA-5210 :: 1U Mid-range Modular x86 (Single CPU) Network Appliance for Next Generation Firewall, UTM and Web Security
Lanner NCA-5210
Lanner NCA-5210

Lanner NCA-5510 :: 1U High Performance x86 (Single CPU) Network Appliance for Enterprise Firewall, UTM and IPS
Lanner NCA-5510
Lanner NCA-5510
* image courtesy Lanner Electronics Inc.

A sample low-performance TOFFEE Hardware which I built:

Intel Celeron C1037U fanless hardware
Intel Celeron C1037U fanless hardware

Intel Celeron C1037U fanless hardware

Intel Celeron C1037U fanless hardware

References:



建议主题:


TOFFEE - 广域网优化


Categories

💎 TOFFEE-MOCHA new bootable ISO: Download
💎 TOFFEE Data-Center Big picture and Overview: Download PDF


推荐主题:

TOFFEE-DataCenter screenshots on a Dual CPU - Intel(R) Xeon(R) CPU E5645 @ 2.40GHz - Dell Server ↗
Saturday' 13-Mar-2021

Demo TOFFEE_DataCenter WAN Optimization VM (in VirtualBox) Test Setup ↗
Saturday' 13-Mar-2021
Demo TOFFEE_DataCenter WAN Optimization VM (in VirtualBox) Test Setup

TOFFEE Benchmarks :: TOFFEE-1.1.28 ↗
Saturday' 13-Mar-2021
Here is the TOFFEE WAN Optimization benchmarks of the TOFFEE version: TOFFEE-1.1.28. This is the current TOFFEE development version till date (2-Jul-2016). This is a HPC TOFFEE variant meant for high-end custom build servers and high-end desktops (i.e High Performance Computing a.k.a HPC). TOFFEE built this way often needs customized kernel compilation and build such as processor specific and hardware specific tune-ups since it is highly CPU intensive (if not offloaded via Hardware Accelerator Cards).

Power consumption of my Home Lab devices for research ↗
Saturday' 13-Mar-2021
Here is my power-consumption measurements of various devices deployed within my home lab. I measured via my kill-a-watt sort of power-meter which is fairly reliable and accurate. I checked its accuracy with various standard load such as Philips LED laps and other constant power-consuming devices to make sure that the power-meter is precise.

TOFFEE Download :: TOFFEE-1.1.70-1-portable ↗
Saturday' 13-Mar-2021

Live demo - Data Transfer - High bandwidth to Low bandwidth ↗
Saturday' 13-Mar-2021
I always wanted to do some real experiments and research on packet flow patterns from High-bandwidth to Low-bandwidth networks via networking devices. This is something can be analyzed via capturing Network stack buffer data and other parameters, bench-marking, and so on. But eventually the data-transfer nature and other aspects is often contaminated due to the underlying OS and the way Network stack is implemented. So to understand the nature of packet flow from Higher to Lower bandwidth and vice-versa such as Lower to higher bandwidth, I thought I experiment with various tools and things which physically we can observe this phenomena.



Building my own CDN - Finally Completed - Update: 17-Dec-2017 ↗
Saturday' 13-Mar-2021
Today I finally completed building my own private CDN. As I discussed so far in my earlier topics (Building my own CDN), I want to custom build the same step-by-step from scratch. And I don't want to for now use/buy third-party CDN subscriptions from Akamai, CloudFlare, Limelight, etc as I discussed earlier.

INDEX :: Content Delivery Networks or Content Distribution Networks (CDN) ↗
Saturday' 13-Mar-2021

TOFFEE DataCenter WAN Optimization - Google Hangouts demo and VOIP Optimization ↗
Saturday' 13-Mar-2021
TOFFEE DataCenter WAN Optimization - Google Hangouts demo and VOIP Optimization

The TOFFEE Project :: TOFFEE-Mocha :: WAN Emulator ↗
Saturday' 13-Mar-2021
The TOFFEE Project :: TOFFEE-Mocha :: Linux Open-Source WAN Emulator



Featured Educational Video:
在YouTube上观看 - [89//1] B.E and M.E Final Year Projects - Form your Team ↗

Raspberry Pi as a Networking Device ↗
Saturday' 13-Mar-2021
Raspberry Pi is often used as a single board computer for applications such as IoT, hobby projects, DIY, education aid, research and prototyping device. But apart from these applications Raspberry Pi can be used for real-world applications such as in making a full-fledged networking devices. Raspberry Pi is a single board ARM based hardware which is why it is also classified as ARM based SoC. Since it is ARM based it is highly efficient, tiny form-factor and lower in power consumption with moderate computational power. This will allow it to work several hours on emergency battery backup power supply such as low-cost domestic UPS and or some renewable energy source, which is a prerequisite for a typical networking device.

My Lab HDD and SSD logs for research ↗
Saturday' 13-Mar-2021

Demo TOFFEE-DataCenter WAN Optimization VM Test Setup ↗
Saturday' 13-Mar-2021

CDN Hosting ↗
Saturday' 13-Mar-2021
It is quite interesting that there are few web hosting firms are offering direct CDN based hosting services. Since it is a direct CDN based hosting, it is cheap, extremely easy or transparent CDN service. It is transparent, since each time you publish your content in the hosting web-server (origin server), it is immediately is in sync automatically in the user-serving CDN caching machines. Since the hosting vendor and the CDN vendor are all the same, it is also easy to use their services. There is no incompatibility issues, interoperability issues, and better integrated analytics, are all the benefits of CDN Hosting services.



在YouTube上观看 - [466//1] 158 VLOG - TOFFEE WAN Optimization Software Development live update - 6-Nov-2016 ↗

Bulk Ping Tests - WAN Acceleration ↗
Saturday' 13-Mar-2021



Research :: Optimization of network data (WAN Optimization) at various levels:
Network File level network data WAN Optimization


Learn Linux Systems Software and Kernel Programming:
Linux, Kernel, Networking and Systems-Software online classes [CDN]


Hardware Compression and Decompression Accelerator Cards:
TOFFEE Architecture with Compression and Decompression Accelerator Card


TOFFEE-DataCenter on a Dell Server - Intel Xeon E5645 CPU:
TOFFEE-DataCenter screenshots on a Dual CPU - Intel(R) Xeon(R) CPU E5645 @ 2.40GHz - Dell Server