Проект TOFFEE
ГЛАВНАЯДОКУМЕНТАЦИЯОБНОВЛЕНИЕВИДЕОИССЛЕДОВАНИЕСКАЧАТЬСПОНСОРЫконтакт


DOCUMENTATION 》 TOFFEE hardware selection guide

Language :: Portuguese

When you build a WAN Optimization device with TOFFEE the entire packet processing (data optimization) takes place in software layer or in other words more precisely Operating System kernel space. However if you have any compression or encryption hardware accelerator hardware card the parts of the TOFFEE packet processing modules can be offloaded to hardware layer and thus improving its efficiency.

But the focus and assumption in this guide is that you are using a generic computing platform such as PC/server/IoT device to build a WAN Optimization device with TOFFEE platform, since hardware offload option is only feasible for large OEMs and other such commercial equipment manufacturers. So it is important that based on your WAN speeds within which these TOFFEE devices are to be deployed, you need to choose your hardware specifications as suggested in this guide.

Understanding CPU Benchmarks:
Introducing TrueBench - a high resolution CPU benchmarking system:
TrueBench
TrueBench is an unique benchmarking system in which the core system performance and efficiency parameters are measured at extreme high resolution in the order of several million/billion µ-seconds for a given specific task. TrueBench is a part of The TOFFEE Project research. For more details: visit TrueBench

Applications(use-cases) of TrueBench:

  • building low-latency high performance networking devices
  • embedded/SoC CPU (platform) evaluation
  • server and datacenter hardware evaluation
  • new product design/architecture evaluation
  • scientific applications (such as HPC, Super-Computers, etc)

Choosing the CPU for your TOFFEE device:
Here is a definitive guide which will help you to choose the CPU for your TOFFEE WAN Optimization device. TOFFEE source-code is highly modular. It can scale-up or scale-down its optimization level based on your hardware and more precisely CPU processing potential. Having said that lets assume you have enabled all optimization levels. In that context here is the table which gives an idea to choose your CPU according to your deployment specific WAN network speeds:

NOTE: This table is derived after extensive trials, testing and research over several years. And as well a co-relation between CPU's benchmarks (such as TrueBench) single thread performance benchmarks vs standard multi-thread benchmarks vs TOFFEE's real-time performance during extensive high-load packet processing.

CPU / Hardware Specs TrueBench Score WAN Speeds
Raspberry Pi3 Model B 1.2GHz 64-bit quad-core ARMv8; 1GB RAM 1,310,619,137 <= 5-10Mbps
ARM Cortex-A53(ARMv8 64bit) (ODROID-C2) 1.50 GHz, Quad Core, ODROID-C2 - IoT single board computer(SBC) 949,003,080 <= 10-20Mbps
Intel Atom D525 1.80 GHz, Dual Core, 13 W TDP 874,076,069 <= 20-30Mbps
High-end Server:
Intel Xeon E3-1240 v3
91,632,198 <= 300-600Mbps
High-end Desktop:
Intel core i7 6700K
44,200,382 <= 700-900Mbps (1Gbps approx)

So in case if you are building your own WAN Optimization device (or in general any networking device), you can benchmark with TrueBench (as suggested in the TrueBench website) and submit me your results (screen output).

TOFFEE-DataCenter: For the same/similar above specs, TOFFEE-DataCenter should provide only half the performance (WAN speeds) as compared to TOFFEE. The reason being TOFFEE-DataCenter does user-space packet processing and it is lot more versatile, flexible and modular. Due to this TOFFEE-DataCenter is capable of optimizing the data far more than TOFFEE.

Choosing the RAM/memory for your TOFFEE device:
TOFFEE device just like any typical Linux system needs just minimum amount of RAM. The entire data processing of packets will take place in your RAM. By no means TOFFEE uses your harddisk (or any secondary storage) space for packet processing. So whether it is Gigabit WAN or within 100Mbps speeds, choose RAM which has around 4-8GB of overall capacity.

However to achieve maximum optimal performance especially for high-speed WAN links, I highly recommend you to choose RAM with maximum speed. Such as DDR4 (with 2.8GHz or so). This gives the best CPU<>Memory bus interconnect speeds and improves your packet processing capabilities of your TOFFEE device. This is also sometimes applicable not just TOFFEE hardware build, but any such network devices which deals with real-time data/packet processing.

Choosing server hardware for Gigabit speeds (1G/10G and so on):Here are some examples:

Lanner FW-8894 :: 1U High Performance x86 (Dual CPU) Network Appliance for Enterprise Firewall, UTM and IPS
Lanner FW-8894
Lanner FW-8894

Lanner NCA-5210 :: 1U Mid-range Modular x86 (Single CPU) Network Appliance for Next Generation Firewall, UTM and Web Security
Lanner NCA-5210
Lanner NCA-5210

Lanner NCA-5510 :: 1U High Performance x86 (Single CPU) Network Appliance for Enterprise Firewall, UTM and IPS
Lanner NCA-5510
Lanner NCA-5510
* image courtesy Lanner Electronics Inc.

A sample low-performance TOFFEE Hardware which I built:

Intel Celeron C1037U fanless hardware
Intel Celeron C1037U fanless hardware

Intel Celeron C1037U fanless hardware

Intel Celeron C1037U fanless hardware

References:



Предлагаемые темы:


TOFFEE - Оптимизация WAN


Categories

💎 TOFFEE-MOCHA new bootable ISO: Download
💎 TOFFEE Data-Center Big picture and Overview: Download PDF


Рекомендуемые темы:

Optimization of network data (WAN Optimization) at various levels ↗
Saturday' 13-Mar-2021
WAN Network data can be optimized at various levels depending upon the network applications, protocols, topology and use-cases. So the amount of data you can optimize will depend on the strategy you choose to optimize. Such as: Network Packet level optimization, Session level optimization, File level optimization, etc.

TOFFEE (and TOFFEE-DataCenter) deployment with web-proxy cache ↗
Saturday' 13-Mar-2021
If you want to deploy TOFFEE along with a web-proxy cache (such as Squid Proxy) you can deploy the same as shown below. TOFFEE does not cache files. TOFFEE does packet level network optimization. So if you want caching your web content you can use transparent mode web-proxy cache intercepting your WAN links. A web-proxy may reduce amount of data being processed (optimized) within these TOFFEE devices and so reduce the CPU overheads and improve its performance.

TEST CASES :: TEST RESULTS :: TOFFEE-Mocha-1.0.14 Development version ↗
Saturday' 13-Mar-2021

TOFFEE DataCenter WAN Optimization - Google Hangouts demo and VOIP Optimization ↗
Saturday' 13-Mar-2021
TOFFEE DataCenter WAN Optimization - Google Hangouts demo and VOIP Optimization

TOFFEE Download :: TOFFEE-1.1.70-1-portable ↗
Saturday' 13-Mar-2021

TOFFEE (and TOFFEE-DataCenter) deployment in Large Infrastructure and or ISP Networks ↗
Saturday' 13-Mar-2021
Large Infrastructure or ISP setup: In case if you are an ISP and interested in deploying a large customer WAN Optimized network or an add-on enhanced (WAN Optimized) network for select few customers, then you can deploy something as shown below. Although this case is not meant for hobby/DIY users. This is a feasible solution for high-end professional application and the same can be deployed.

Watch on Youtube - [466//1] 158 VLOG - TOFFEE WAN Optimization Software Development live update - 6-Nov-2016 ↗


TOFFEE-Mocha WAN Emulator Jitter Feature ↗
Saturday' 13-Mar-2021

DIY TOFFEE WAN Optimization Device with Intel Celeron Mini PC ↗
Saturday' 13-Mar-2021
Here is a step-by-step DIY to build your own Intel based Mini PC WAN Optimization Device with TOFFEE. I chose this below Intel Celeron Mini PC since it is fan-less aluminium case and as well it has 2 dedicated inbuilt Gigabit Ethernet ports. You can use one for LAN Network and one for WAN Network.

TOFFEE-Mocha WAN emulator Lab deployment and topology guide ↗
Saturday' 13-Mar-2021

TCP Tune-up and Performance Analysis Graphs - Congestion Control - Research - Dos and Don'ts ↗
Saturday' 13-Mar-2021



Featured Educational Video:
Watch on Youtube - [8613//1] x254 Kernel Init Code without Kernel Module - Kernel Programming Tip #linode ↗

A study on Deep Space Networks (DSN) ↗
Saturday' 13-Mar-2021
When you are dealing Deep Space Networks (DSN) one among the most challenging parts is the Interplanetary distances and communicating data across such vast distances. This is where we are not dealing with common Internet type traffic such as HTTP/FTP/VoIP/etc but it is completely different when it comes to DSN so far. So optimizing data in DSN becomes mandatory. For example if you think one of the Mars Rovers, they have used LZO lossless compression.

My Lab Battery Purchase and Service logs for Research ↗
Saturday' 13-Mar-2021
Here is a complete log of my lab battery purchase, service record which I maintain in Google drive. These I use for my home (or my family generic use) as well as a part of my home lab. I maintain a detailed log this way to monitor the failure rate of these batteries. This will allow me to select a specific brand/model which has higher success rate and to monitor any premature failure/expiry. The service log helps me to monitor and schedule the next service routine so that I can maintain these batteries in tip-top condition.

The TOFFEE Project :: TOFFEE-DataCenter :: WAN Optimization ↗
Saturday' 13-Mar-2021
The TOFFEE Project :: TOFFEE-DataCenter :: Linux Open-Source WAN Optimization

Tracking Live TCP Sessions (connections) - WAN Optimization Device ↗
Saturday' 13-Mar-2021




TOFFEE-Mocha WAN Emulation software development - Update: 1-July-2016 ↗
Saturday' 13-Mar-2021
Today I got a feature request from Jonathan Withers. Jonathan is from a company called MultiWave Australia. He said he is able to get the TOFFEE-Mocha Raspberry Pi setup up and with that he is able to emulate geostationary satellite link. But he requested me is there a way to extend the constant packet delay from 40mS to 500mS. So as a part of his request I supported the same in the current ongoing development version of TOFFEE-Mocha.



Research :: Optimization of network data (WAN Optimization) at various levels:
Network File level network data WAN Optimization


Learn Linux Systems Software and Kernel Programming:
Linux, Kernel, Networking and Systems-Software online classes [CDN]


Hardware Compression and Decompression Accelerator Cards:
TOFFEE Architecture with Compression and Decompression Accelerator Card [CDN]


TOFFEE-DataCenter on a Dell Server - Intel Xeon E5645 CPU:
TOFFEE-DataCenter screenshots on a Dual CPU - Intel(R) Xeon(R) CPU E5645 @ 2.40GHz - Dell Server