The TOFFEE Project
HOMEDOCUMENTATIONUPDATESVIDEOSRESEARCHDOWNLOADSPONSORSCONTACT


DOCUMENTATION 》 TOFFEE with Hardware Compression and Decompression Accelerator Cards

You can build a basic TOFFEE WAN Optimization hardware completely in software layer (i.e its networking data-plane and control-plane). And if you are a product manufacturer you can make commercial WAN Optimization products with TOFFEE with software layer alone. And if you choose to improve its performance, you can use any third-party PCIe Compression Accelerator cards.

Here is the TOFFEE system architecture with and without hardware accelerator card (i.e Hardware offload). Hardware offload will greatly reduce the load on general purpose CPU (which is your software/OS layer) and the core data optimization operation such as loss-less compression (sometimes even encryption) is done within a dedicated Hardware Accelerator card (or chip) as shown below.
TOFFEE Architecture with Compression and Decompression Accelerator Card

In this case TOFFEE will work as an WAN Optimization framework. With this framework you can architect your entire commercial WAN Optimization product series. You need to modify TOFFEE Linux kernel modules (and APIs) so that it no longer choose kernel's LZ77, LZO or LZ4 software compression libraries (which is CPU bound), instead point to the hardware accelerator card vendor provided kernel's driver/library APIs. This makes packet data compression within TOFFEE Linux Kernel module CPU bound to dedicated co-processor hardware compression accelerator card bound.

It is a well known fact that Linux Kernel's Kernel modules are not great at scaling with multiple CPU Processor Cores. So in a systems architecture point of having more CPU cores in a TOFFEE WAN Optimization device gives no significant advantage. The per-core CPU performance is what required for a workload like TOFFEE packet data optimization. So if architect a high-end WAN Optimization device you need to consider hardware acceleration offload if feasible.

For example: Here is a general purpose AHA AHA363PCIE0301G 5Gbs GZIP Compression/Decompression Accelerator Card. Typical applications (or use-cases) of this card could be Storage Arrays, Load Balancers, WAN Optimization, Web Servers, Data Analytics, etc.
Comtech AHA AHA363PCIE0301G 5Gbs GZIP Compression/Decompression Accelerator Card
Image courtesy/link: https://images-na.ssl-images-amazon.com/images/I/61kMl1v4BmL._SL1500_.jpg



Intel FPGA PAC D5005 High-end Drop-in Accelerator: Here is yet another but general purpose FPGA Accelerator card can be used for processing high-bandwidth Network and Storage Data Processing (hardware offload). Read the complete article here.
Intel FPGA PAC D5005 On HPE ProLiant DL380 Gen10
Image courtesy/link: https://www.servethehome.com/wp-content/uploads/2019/08/Intel-FPGA-PAC-D5005-on-HPE-ProLiant-DL380-Gen10.jpg
Intel FPGA PAC D5005
Image courtesy/link: https://www.servethehome.com/wp-content/uploads/2019/08/Intel-FPGA-PAC-D5005-Diagram.jpg


References:



Suggested Topics:


TOFFEE - WAN Optimization


Categories

💎 TOFFEE-MOCHA new bootable ISO: Download
💎 TOFFEE Data-Center Big picture and Overview: Download PDF


Recommended Topics:

Grid Hosting vs CDN Hosting ↗
Saturday' 13-Mar-2021

Bufferbloat in a Networking Device or an Appliance ↗
Saturday' 13-Mar-2021

TOFFEE Data-Center WAN Optimization deployment in Big Data Analytics ↗
Saturday' 13-Mar-2021

The TOFFEE Project :: TOFFEE-DataCenter :: WAN Optimization ↗
Saturday' 13-Mar-2021
The TOFFEE Project :: TOFFEE-DataCenter :: Linux Open-Source WAN Optimization

Tracking Live TCP Sessions (connections) - WAN Optimization Device ↗
Saturday' 13-Mar-2021

TOFFEE-Butterscotch Bandwidth saver software development - Update: 28-Oct-2016 ↗
Saturday' 13-Mar-2021
Here is my first software development update of TOFFEE-Butterscotch. In my first TOFFEE-Butterscotch news update I have introduced about TOFFEE-Butterscotch research, project specifications, use-cases, etc. Introducing TOFFEE-Butterscotch Alerts: These are simple packet counters which corresponds to the filter type. For example if the incoming TCP-SYN packets are blocked then its corresponding alert counter will increment whenever such a packet arrives and gets filtered (dropped).

Watch on Youtube - [466//1] 158 VLOG - TOFFEE WAN Optimization Software Development live update - 6-Nov-2016 ↗


WAN Optimization iPhone and Android - Mobile App ↗
Saturday' 13-Mar-2021

Setting up a WAN Emulator within VirtualBox ↗
Saturday' 13-Mar-2021

Network Packet Queue or Buffer - Packet Flow Control, Fragmentation and MTU ↗
Saturday' 13-Mar-2021
Network Packet Queue or Buffer - Packet Flow Control, Fragmentation and MTU

TOFFEE-Mocha WAN Emulator Jitter Feature ↗
Saturday' 13-Mar-2021



Featured Educational Video:
Watch on Youtube - [89//1] B.E and M.E Final Year Projects - Form your Team ↗

TOFFEE Data-Center WAN Optimization deployment in Big Data Analytics ↗
Saturday' 13-Mar-2021

TOFFEE-Mocha Documentation :: TOFFEE-Mocha-1.0.14-1-x86_64 ↗
Saturday' 13-Mar-2021

Building my own CDN - Finally Completed - Update: 17-Dec-2017 ↗
Saturday' 13-Mar-2021
Today I finally completed building my own private CDN. As I discussed so far in my earlier topics (Building my own CDN), I want to custom build the same step-by-step from scratch. And I don't want to for now use/buy third-party CDN subscriptions from Akamai, CloudFlare, Limelight, etc as I discussed earlier.

Introducing TrueBench - a high resolution CPU benchmarking system ↗
Saturday' 13-Mar-2021
TrueBench is an unique open-source benchmarking system in which the core system performance and efficiency parameters are measured at extreme high resolution in the order of several million/billion µ-seconds for a given specific task. TrueBench is a part of The TOFFEE Project research. With TrueBench Raspberry Pi 3, Raspberry Pi 2B, Raspberry Pi 2 and other embedded SoC devices are benchmarked and you can do a comparative analysis with standard mainstream x86 devices.




Introducing TOFFEE-DataCenter ↗
Saturday' 13-Mar-2021
TOFFEE TOFFEE Data-Center is specifically meant for Data Center, Cluster Computing, HPC applications. TOFFEE is built in Linux Kernel core. This makes it inflexible to adapt according to the hardware configuration. It does sequential packet processing and does not scale up well in large multi-core CPU based systems (such as Intel Xeon servers, Core i7 Extreme Desktop systems,etc). Apart from this since it is kernel based, if there is an issue in kernel, it may crash entire system. This becomes a challenge for any carrier grade equipment (CGE) hardware build.



Research :: Optimization of network data (WAN Optimization) at various levels:
Network File level network data WAN Optimization


Learn Linux Systems Software and Kernel Programming:
Linux, Kernel, Networking and Systems-Software online classes


Hardware Compression and Decompression Accelerator Cards:
TOFFEE Architecture with Compression and Decompression Accelerator Card [CDN]


TOFFEE-DataCenter on a Dell Server - Intel Xeon E5645 CPU:
TOFFEE-DataCenter screenshots on a Dual CPU - Intel(R) Xeon(R) CPU E5645 @ 2.40GHz - Dell Server