The TOFFEE Project
HOMEDOCUMENTATIONUPDATESVIDEOSRESEARCHDOWNLOADSPONSORSCONTACT


RESEARCH 》 Optimization of network data (WAN Optimization) at various levels

WAN Network data can be optimized at various levels depending upon the network applications, protocols, topology and use-cases. So the amount of data you can optimize will depend on the strategy you choose to optimize.

Network Packet level optimization: You can optimize your network data down to individual packets. This may be useful to optimize discrete network data such as VoIP and streaming networking applications. So depending on your network you can do frame level optimization in case if it is a Layer-2 switched network something like MPLS/VPLS scenarios. And in case it is a IP based routed networks you can do IP packet level optimization. So that the IP-header is intact where-as its other protocol headers and the payload is optimized. Hence packet level optimization suits for discrete network data and corresponding network applications.
Network Packet level network data WAN Optimization

Session level optimization: Session level (or session based) optimization is suited for complete/full sessions bound by a network connection. For example TCP-connection. A remote MySQL or Oracle database access involves a TCP-connection (or a session). So in this case we are not talking about discrete packet level access (although a session will always comprise multiple packet transfers to and fro) and we are not talking about individual file-level access, instead it is a session-level bulk data transfers. In this case we can employ different network optimization strategy so that the entire session can be optimized.
Network Session level network data WAN Optimization

File level optimization: Last but not least a file-level optimization involves a typical file-download/file-upload scenario such as HTTP, FTP and so on. In this case in general even before sending across the wire we can do lossy (and lossless) compression of these files depending on its contents. But when it is being transferred across the network we can employ a network optimization strategy where an entire file transfer is optimized. We can also implement both above discussed techniques such as network packet-level and session-level to optimize file-level network data transfer. Some of the examples which comes in this category are CDN networks, HTTP Cache Proxy (such as Squid-Cache) and so on.
Network File level network data WAN Optimization

Case study :: Dolby Servers in movie theaters: Movie theaters these days get digitized extremely high-quality movie files from film producers/distributor channels. Since these files are so huge they are transferred via high-speed wire (fibre-optic) networks. But in case if the movie theaters lack high-speed network connectivity then they ship these movie copies on a regular computer hard-drive. This is a good case study and use-case where file-level network data optimization can be deployed.
Here are some interesting videos on Digital Cinema movie servers and projection technology:


Here is my detailed video of the same:

In case if you are having a company and if you are looking for ways to optimize your network, performance tune-up and or building network optimization product(s) (which may or may not include porting/integrating TOFFEE on to your product), in that case I can offer my technical consultation services. If you are interested you can contact me for the same.



Suggested Topics:


WAN Optimization and Network Optimization

💎 TOFFEE-MOCHA new bootable ISO: Download
💎 TOFFEE Data-Center Big picture and Overview: Download PDF


Recommended Topics:

Off-Grid Solar Power System for Raspberry Pi ↗
Saturday' 13-Mar-2021
When you choose to use your Raspberry Pi device as your IoT based remote weather station or if you are building Linux kernel (like kernel compilation) within the same, you need a good uninterrupted power source (UPS). But if you are using it on site or in some research camping location you can choose to power your Raspberry Pi device with your custom off-grid solar power source.

TOFFEE-Butterscotch a TOFFEE for Home/SOHO Internet/WAN bandwidth ↗
Saturday' 13-Mar-2021
TOFFEE-Butterscotch a TOFFEE for Home/SOHO Internet/WAN bandwidth

CDN Content Delivery Networks - Types ↗
Saturday' 13-Mar-2021

TOFFEE-Mocha - WAN Emulator :: TOFFEE-MOCHA-2.0.3-0-10-nov-2018-x86-64.iso ↗
Saturday' 13-Mar-2021
Download TOFFEE-MOCHA-2.0.3-0-10-nov-2018-x86-64.iso via Google Drive share: Live bootable x86-64 Debian Stretch 9.5 with light-weight LXDE UI ISO (includes source-code): TOFFEE-MOCHA-2.0.3-0-10-nov-2018-x86-64.iso You can find the source tar-ball in the /root folder. To know more about the project kindly refer TOFFEE- Mocha: News and Updates - Documentation. To know more about current specific release, objectives, features, release notes/updates, quick demo and future road-map, you can watch my video below.

First TOFFEE-Butterscotch Code Release ↗
Saturday' 13-Mar-2021
TOFFEE-Butterscotch is a variant of TOFFEE can be used to save and optimize your Home/SOHO Internet/WAN bandwidth. Unlike TOFFEE (and TOFFEE-DataCenter) TOFFEE-Butterscotch is a non peer-to-peer (and asymmetric) network optimization solution. This makes TOFFEE-Butterscotch an ideal tool for all Home and SOHO users.

VPN Network Optimization via TOFFEE WAN Optimization ↗
Saturday' 13-Mar-2021
VPN Networks may degrade network performance due to various packet processing overheads such as encryption and by adding extra network protocol header(s) (such as IPv4/IPv6, IPSec, etc). This may inflate near MTU sized packets and causes excessive packet fragmentation. Here are the few examples of packet processing involved in a VPN (or a VPN like) Tunnel. With TOFFEE you can optimize these packets even before they get processed on to a VPN device. TOFFEE optimizes packet contents (application payload and transport headers) so that these TOFFEE optimized packets when they get processed by VPN devices (or VPN software stack) they may never need further packet fragmentation. Here is a deployment scenario of TOFFEE with VPN devices.



TOFFEE-DataCenter as a VNF for NFV ↗
Saturday' 13-Mar-2021

TOFFEE (and TOFFEE-DataCenter) deployment in SD-WAN Applications ↗
Saturday' 13-Mar-2021
Software-Defined Wide Area Networking (SD-WAN) is a new innovative way to provide optimal application performance by redefining branch office networking. Unlike traditional expensive private WAN connection technologies such as MPLS, etc., SD-WAN delivers increased network performance and cost reduction. SD-WAN solution decouple network software services from the underlying hardware via software abstraction.

TOFFEE (and TOFFEE-DataCenter) deployment in Large Infrastructure and or ISP Networks ↗
Saturday' 13-Mar-2021
Large Infrastructure or ISP setup: In case if you are an ISP and interested in deploying a large customer WAN Optimized network or an add-on enhanced (WAN Optimized) network for select few customers, then you can deploy something as shown below. Although this case is not meant for hobby/DIY users. This is a feasible solution for high-end professional application and the same can be deployed.

Moon Base and Space Colonization - First we need fast InterPlanetary Internet ↗
Saturday' 13-Mar-2021



Featured Educational Video:
Watch on Youtube - [170//1] 169 Q&A - Add additional HardDrive or storage space in Linux VirtualBox VM ↗

Tweaking Network Latency - Live Demo - via TOFFEE-DataCenter ↗
Saturday' 13-Mar-2021

TOFFEE deployment topology guide ↗
Saturday' 13-Mar-2021
Assume you have two sites (such as Site-A and Site-B) connected via slow/critical WAN link as shown below. You can optimize this link by saving the bandwidth as well possibly improve the speed. However, the WAN speed can be optimized only if the WAN link speeds are below that of the processing latency of your TOFFEE installed hardware. Assume your WAN link is 12Mbps, and assume the maximum WAN optimization speed/capacity of Raspberry Pi is 20Mbps, then your link will get speed optimization too. And in another case, assume your WAN link is 50Mbps, then using the Raspberry Pi as WAN Optimization device will actually increase the latency (i.e slows the WAN link). But in all the cases the bandwidth savings should be the same irrespective of the WAN link speed. In other words, if you want to cut down the WAN link costs via this WAN Optimization set up, you can always get it since it reduces the overall bandwidth in almost all the cases (including encrypted and pre-compressed data).

Network Latency in WAN Networks and performance optimization ↗
Saturday' 13-Mar-2021
Here is my video article on Network Latency in WAN Networks (such as long distance Satellite links, etc) and how you can optimize the same to achieve better network performance.

TOFFEE Data-Center WAN Optimization deployment in Big Data Analytics ↗
Saturday' 13-Mar-2021




TOFFEE-DataCenter Live Demo with Clash of Clans game data - 30-Aug-2016 ↗
Saturday' 13-Mar-2021
Today I have done a test setup so that I can able to connect my Android Samsung Tab via TOFFEE DataCenter. Below is my complete test topology of my setup. For demo (and research/development) context I configured TOFFEE DataCenter in engineering debug mode. So that I do not need two devices for this purpose.



Research :: Optimization of network data (WAN Optimization) at various levels:
Network File level network data WAN Optimization


Learn Linux Systems Software and Kernel Programming:
Linux, Kernel, Networking and Systems-Software online classes


Hardware Compression and Decompression Accelerator Cards:
TOFFEE Architecture with Compression and Decompression Accelerator Card [CDN]


TOFFEE-DataCenter on a Dell Server - Intel Xeon E5645 CPU:
TOFFEE-DataCenter screenshots on a Dual CPU - Intel(R) Xeon(R) CPU E5645 @ 2.40GHz - Dell Server