TOFFEE项目
文档更新影片研究下载赞助商联系


RESEARCH 》 Power consumption of my Home Lab devices for research

AMD RYZEN 3 1200 - FreeNAS Storage array build
  • CPU: AMD Ryzen 3 1200 (4 cores/4 threads)
  • RAM: Corsair Vengeance 8GB DDR4 LPX 2400MHz C16 Kit
  • Motherboard: Gigabyte GA-A320M-HD2 AM44
  • Graphics/Display: Asus Geforce 210GT 1GB DDR3
  • PSU: Circle CPH698V12-400
  • Storage: WDC WD10JPVX-75JC3T0 - WD 1TB HDD
System BIOS53 watts
Idle System (Linux Ubuntu OS)52 watts
Casual browsing53 watts
Youtube video playback60 watts
Kernel compilation with 4-threads "make -j4" (99% load)74 watts
Kernel compilation with 3-threads "make -j3" (80% load)71 watts

My Intel Core i7-5820K - Desktop build
  • CPU: Intel Core i7-5820K (6 cores/12 threads)
  • RAM: Corsair PC2800 DDR4 14GB Kit
  • Motherboard: Gigabyte X99-UD4
  • Graphics/Display: Asus Geforce 210GT 1GB DDR3
  • PSU: Corsair VS450
  • CPU Liquid Cooling system: Cooler Master Nepton 240m
  • Storage: Transcend TS128GSSD370 128GB SSD
Idle System (Linux Ubuntu OS)70 watts
System BIOS90 watts
Linux kernel compilation (80%) load150 watts

My Intel Celeron CPU 1037U Mini PC WAN Optimization Device
  • CPU: Intel Celeron CPU 1037U
  • RAM: DDR3 PC3L 4GB
  • Storage: Transcend TS128GSSD370 128GB SSD
Idle System (Linux Ubuntu OS)18-20 watts
System BIOS16.5 watts
Linux kernel compilation (95%) load21-24 watts

My HP Envy 15-J111TX Laptop
  • CPU: Intel Corei7-4700MQ
  • RAM: DDR3 PC3L 12GB
  • Storage: WD Blue 250GB Scorpio HDD
Idle System (Linux Ubuntu OS) charging44 watts
Idle System (Linux Ubuntu OS) charged15 watts
Poweroff charging28 watts
Poweroff charged0.1 watts
Poweron charged suspend0.75 watts
Linux kernel compilation (95%) load charging90 watts
Linux kernel compilation (95%) load charged69 watts

My Dell 15R 5537 Laptop
  • CPU: Intel Corei7-4500U
  • RAM: DDR3 PC3L 8GB
  • Storage: Seagate 320GB Momentus HDD
Idle System (Linux Ubuntu OS) charging42 watts
Idle System (Linux Ubuntu OS) charged10 watts
Poweroff charging29 watts
Poweroff charged0.1 watts
Poweron charged suspend0.70 watts
Linux kernel compilation (95%) load charging60 watts
Linux kernel compilation (95%) load charged30 watts

My Acer Aspire 4810T Laptop
  • CPU: Intel Core Solo SU3500 1.4 GHz
  • RAM: DDR3 PC3 4GB
  • Storage: WD Blue 250GB Scorpio HDD
  * No Battery, so no charging.
Idle System (Linux Manjaro OS)16.23 watts
System BIOS24.30 watts
Casual Browsing22.27 watts
Youtube Playback22.45 watts

Raspberry Pi2 Device
  • Powered via 2Amp USB power-supply
  • Raspbian OS
  • USB mouse and USB keyboard connected
Casual browsing2.6 - 3 watts
Youtube video playback (25% load)3 - 3.5 watts
Kernel compilation with 4-threads "make -j4" (99% load)3.9 - 4 watts
Kernel compilation with 3-threads "make -j3"3.67 - 3.75 watts
idle device with no keyboard and no mouse2.08 - 2.1 watts

NETGEAR RN104 ReadyNAS
  • 2x 2.5'' Laptop HDD drives
  • 2x 3.5'' Desktop HDD drives
  • Single x-RAID volume with 4 HDD drives
Device off but plugged-in0.58 watts
Idle device after booting28 watts
File copy (write operation)28.7 watts
RAID Volume scrub operation29.5 watts

APC BX600C-IN UPS - APC Back-UPS 600(UPS not powered-on but connected to live power socket)
Standby Charging13.5 watts
Standby not-Charging7.8 watts

APC BX600CI-IN UPS - APC Back-UPS 600(UPS not powered-on but connected to live power socket)
Standby Charging9.5 watts
Standby not-Charging10-0.9 watts

BenQ LED Monitor 24'' GW2470HM
off plugged-in0.00 watts
Dim11.7 watts

LG LCD TV Monitor 23'' M237WA-PT
off plugged-in0.8 watts
Dim33 watts
Bright45 watts

Samsung LCD Monitor 22'' 2243NWX
off plugged-in0.7 watts
Dim20 watts
Bright33.5 watts

Power consumption of my Home Lab devices for research

Here is my power-consumption measurements of various devices deployed within my home lab. I measured via my kill-a-watt sort of power-meter which is fairly reliable and accurate. I checked its accuracy with various standard load such as Philips LED laps and other constant power-consuming devices to make sure that the power-meter is precise.

So far I maintained this data in my personal Google drive spreadsheet documents. But now I thought perhaps its good to share these numbers so that it is useful for various users to access their equipment such as:

  • decide UPS and battery backup ratings
  • off-grid solar power installations
  • choose new upgraded hardware which consumes less power and deliver better performance such as SSD over traditional HDD, new CPU, new Monitor, new laptop, servers, desktops and so on. And discard obsolete old hardware.
  • choosing the right PSU (power supply unit) for your desktop PC build

Before posting this article I shot a VLOG regarding the same and posted in my Youtube channel The Linux Channel. You can kindly watch the same:

Explore my lab's historical month wise power-usage trends: I started logging my entire lab monthly power-consumption readings. You can read the article HERE.

Off-Grid Solar Power System for Raspberry Pi: When you choose to use your Raspberry Pi device as your IoT based remote weather station or if you are building Linux kernel (like kernel compilation) within the same, you need a good uninterrupted power source (UPS). But if you are using it on site or in some research camping location you can choose to power your Raspberry Pi device with your custom off-grid solar power source. Kindly read my complete article about the same HERE.
Off-Grid Solar Power System for Raspberry Pi



Suggested Topics:


Generic Home Lab Research

💎 TOFFEE-MOCHA new bootable ISO: Download
💎 TOFFEE Data-Center Big picture and Overview: Download PDF


推荐主题:

Demo TOFFEE-DataCenter WAN Optimization VM Test Setup ↗
Saturday' 13-Mar-2021

Network MTU research and optimization of WAN Links ↗
Saturday' 13-Mar-2021
Network MTU research and optimization of WAN Links

TOFFEE DataCenter WAN Optimization - Google Hangouts demo and VOIP Optimization ↗
Saturday' 13-Mar-2021
TOFFEE DataCenter WAN Optimization - Google Hangouts demo and VOIP Optimization

TOFFEE (and TOFFEE-DataCenter) optimized Wireless Mesh-Networks - B.A.T.M.A.N [open-mesh.org (Open Mesh)] ↗
Saturday' 13-Mar-2021
TOFFEE/TOFFEE-DataCenter can be used to optimize Ad-Hoc Mobile Wireless Mesh-Networks. To learn more about the same here are some references: B.A.T.M.A.N. - https://en.wikipedia.org/wiki/B.A.T.M.A.N. Mobile ad hoc network (MANET) - https://en.wikipedia.org/wiki/Mobile_ad_hoc_network Wireless ad hoc network (WANET) - https://en.wikipedia.org/wiki/Wireless_ad_hoc_network open-mesh.org (Open Mesh) Wiki - https://www.open-mesh.org/projects/open-mesh/wiki

Riverbed and Silver Peak WAN Optimization vs TOFFEE-DataCenter (TOFFEE and or TrafficSqueezer) - FAQ ↗
Saturday' 13-Mar-2021

CDN Content Delivery Networks - Types ↗
Saturday' 13-Mar-2021



A study on WAN Optimization Techniques ↗
Saturday' 13-Mar-2021
There are various techniques with which one can optimize their WAN Network Data. Any long distance communication can be considered as WAN Network. A decade ago any network connecting two countries, considered as a WAN network, and a network within a city as MAN and soon. But these days in general any long distance communication is considered as WAN Network. Such as your Mobile communication networks, Satellite networks, Space Networks (Deep space networks), Trans-Atlantic cable networks, etc.

Demo TOFFEE-DataCenter WAN Optimization packaging feature ↗
Saturday' 13-Mar-2021

TOFFEE-Butterscotch Documentation :: TOFFEE-Butterscotch-1.0.11-rpi2-23-nov-2016 ↗
Saturday' 13-Mar-2021
TOFFEE-Butterscotch Documentation :: TOFFEE-Butterscotch-1.0.11-rpi2-23-nov-2016

Advantages of CDN - Content Delivery Networks or Content Distribution Networks ↗
Saturday' 13-Mar-2021



Featured Educational Video:
在YouTube上观看 - [943//1] x23e TrueNAS ZFS Pool Resilver over and over again issue | ZFS NAS Storage | Forever Resilver ↗

The TOFFEE Project :: TOFFEE-Butterscotch :: Save and Optimize your Internet/WAN bandwidth ↗
Saturday' 13-Mar-2021
TOFFEE-Butterscotch is an open-source software which can be used to save and optimize your Internet/WAN bandwidth. Unlike TOFFEE (and TOFFEE-DataCenter) TOFFEE-Butterscotch is a non peer-to-peer (and asymmetric) network optimization solution. This makes TOFFEE-Butterscotch an ideal tool for all Home and SOHO users.

TOFFEE-Butterscotch Bandwidth saver software development - Update: 17-Nov-2016 ↗
Saturday' 13-Mar-2021
Here is my second software development update of TOFFEE-Butterscotch. In the previous update (28-Oct-2016) I discussed about the Alerts, etc. Whereas in my first TOFFEE-Butterscotch news update I have introduced about TOFFEE-Butterscotch research, project specifications, use-cases, etc.

CDN Content Delivery Networks - Types ↗
Saturday' 13-Mar-2021

Introducing TOFFEE-DataCenter ↗
Saturday' 13-Mar-2021
TOFFEE TOFFEE Data-Center is specifically meant for Data Center, Cluster Computing, HPC applications. TOFFEE is built in Linux Kernel core. This makes it inflexible to adapt according to the hardware configuration. It does sequential packet processing and does not scale up well in large multi-core CPU based systems (such as Intel Xeon servers, Core i7 Extreme Desktop systems,etc). Apart from this since it is kernel based, if there is an issue in kernel, it may crash entire system. This becomes a challenge for any carrier grade equipment (CGE) hardware build.




The TOFFEE Project :: TOFFEE-Mocha :: WAN Emulator ↗
Saturday' 13-Mar-2021
The TOFFEE Project :: TOFFEE-Mocha :: Linux Open-Source WAN Emulator



Research :: Optimization of network data (WAN Optimization) at various levels:
Network File level network data WAN Optimization


Learn Linux Systems Software and Kernel Programming:
Linux, Kernel, Networking and Systems-Software online classes


Hardware Compression and Decompression Accelerator Cards:
TOFFEE Architecture with Compression and Decompression Accelerator Card


TOFFEE-DataCenter on a Dell Server - Intel Xeon E5645 CPU:
TOFFEE-DataCenter screenshots on a Dual CPU - Intel(R) Xeon(R) CPU E5645 @ 2.40GHz - Dell Server