The TOFFEE Project
HOMEDOCUMENTATIONUPDATESVIDEOSRESEARCHDOWNLOADSPONSORSCONTACT


RESEARCH 》 Power consumption of my Home Lab devices for research

AMD RYZEN 3 1200 - FreeNAS Storage array build
  • CPU: AMD Ryzen 3 1200 (4 cores/4 threads)
  • RAM: Corsair Vengeance 8GB DDR4 LPX 2400MHz C16 Kit
  • Motherboard: Gigabyte GA-A320M-HD2 AM44
  • Graphics/Display: Asus Geforce 210GT 1GB DDR3
  • PSU: Circle CPH698V12-400
  • Storage: WDC WD10JPVX-75JC3T0 - WD 1TB HDD
System BIOS53 watts
Idle System (Linux Ubuntu OS)52 watts
Casual browsing53 watts
Youtube video playback60 watts
Kernel compilation with 4-threads "make -j4" (99% load)74 watts
Kernel compilation with 3-threads "make -j3" (80% load)71 watts

My Intel Core i7-5820K - Desktop build
  • CPU: Intel Core i7-5820K (6 cores/12 threads)
  • RAM: Corsair PC2800 DDR4 14GB Kit
  • Motherboard: Gigabyte X99-UD4
  • Graphics/Display: Asus Geforce 210GT 1GB DDR3
  • PSU: Corsair VS450
  • CPU Liquid Cooling system: Cooler Master Nepton 240m
  • Storage: Transcend TS128GSSD370 128GB SSD
Idle System (Linux Ubuntu OS)70 watts
System BIOS90 watts
Linux kernel compilation (80%) load150 watts

My Intel Celeron CPU 1037U Mini PC WAN Optimization Device
  • CPU: Intel Celeron CPU 1037U
  • RAM: DDR3 PC3L 4GB
  • Storage: Transcend TS128GSSD370 128GB SSD
Idle System (Linux Ubuntu OS)18-20 watts
System BIOS16.5 watts
Linux kernel compilation (95%) load21-24 watts

My HP Envy 15-J111TX Laptop
  • CPU: Intel Corei7-4700MQ
  • RAM: DDR3 PC3L 12GB
  • Storage: WD Blue 250GB Scorpio HDD
Idle System (Linux Ubuntu OS) charging44 watts
Idle System (Linux Ubuntu OS) charged15 watts
Poweroff charging28 watts
Poweroff charged0.1 watts
Poweron charged suspend0.75 watts
Linux kernel compilation (95%) load charging90 watts
Linux kernel compilation (95%) load charged69 watts

My Dell 15R 5537 Laptop
  • CPU: Intel Corei7-4500U
  • RAM: DDR3 PC3L 8GB
  • Storage: Seagate 320GB Momentus HDD
Idle System (Linux Ubuntu OS) charging42 watts
Idle System (Linux Ubuntu OS) charged10 watts
Poweroff charging29 watts
Poweroff charged0.1 watts
Poweron charged suspend0.70 watts
Linux kernel compilation (95%) load charging60 watts
Linux kernel compilation (95%) load charged30 watts

My Acer Aspire 4810T Laptop
  • CPU: Intel Core Solo SU3500 1.4 GHz
  • RAM: DDR3 PC3 4GB
  • Storage: WD Blue 250GB Scorpio HDD
  * No Battery, so no charging.
Idle System (Linux Manjaro OS)16.23 watts
System BIOS24.30 watts
Casual Browsing22.27 watts
Youtube Playback22.45 watts

Raspberry Pi2 Device
  • Powered via 2Amp USB power-supply
  • Raspbian OS
  • USB mouse and USB keyboard connected
Casual browsing2.6 - 3 watts
Youtube video playback (25% load)3 - 3.5 watts
Kernel compilation with 4-threads "make -j4" (99% load)3.9 - 4 watts
Kernel compilation with 3-threads "make -j3"3.67 - 3.75 watts
idle device with no keyboard and no mouse2.08 - 2.1 watts

NETGEAR RN104 ReadyNAS
  • 2x 2.5'' Laptop HDD drives
  • 2x 3.5'' Desktop HDD drives
  • Single x-RAID volume with 4 HDD drives
Device off but plugged-in0.58 watts
Idle device after booting28 watts
File copy (write operation)28.7 watts
RAID Volume scrub operation29.5 watts

APC BX600C-IN UPS - APC Back-UPS 600(UPS not powered-on but connected to live power socket)
Standby Charging13.5 watts
Standby not-Charging7.8 watts

APC BX600CI-IN UPS - APC Back-UPS 600(UPS not powered-on but connected to live power socket)
Standby Charging9.5 watts
Standby not-Charging10-0.9 watts

BenQ LED Monitor 24'' GW2470HM
off plugged-in0.00 watts
Dim11.7 watts

LG LCD TV Monitor 23'' M237WA-PT
off plugged-in0.8 watts
Dim33 watts
Bright45 watts

Samsung LCD Monitor 22'' 2243NWX
off plugged-in0.7 watts
Dim20 watts
Bright33.5 watts

Power consumption of my Home Lab devices for research

Here is my power-consumption measurements of various devices deployed within my home lab. I measured via my kill-a-watt sort of power-meter which is fairly reliable and accurate. I checked its accuracy with various standard load such as Philips LED laps and other constant power-consuming devices to make sure that the power-meter is precise.

So far I maintained this data in my personal Google drive spreadsheet documents. But now I thought perhaps its good to share these numbers so that it is useful for various users to access their equipment such as:

  • decide UPS and battery backup ratings
  • off-grid solar power installations
  • choose new upgraded hardware which consumes less power and deliver better performance such as SSD over traditional HDD, new CPU, new Monitor, new laptop, servers, desktops and so on. And discard obsolete old hardware.
  • choosing the right PSU (power supply unit) for your desktop PC build

Before posting this article I shot a VLOG regarding the same and posted in my Youtube channel The Linux Channel. You can kindly watch the same:

Explore my lab's historical month wise power-usage trends: I started logging my entire lab monthly power-consumption readings. You can read the article HERE.

Off-Grid Solar Power System for Raspberry Pi: When you choose to use your Raspberry Pi device as your IoT based remote weather station or if you are building Linux kernel (like kernel compilation) within the same, you need a good uninterrupted power source (UPS). But if you are using it on site or in some research camping location you can choose to power your Raspberry Pi device with your custom off-grid solar power source. Kindly read my complete article about the same HERE.
Off-Grid Solar Power System for Raspberry Pi



Suggested Topics:


Generic Home Lab Research

💎 TOFFEE-MOCHA new bootable ISO: Download
💎 TOFFEE Data-Center Big picture and Overview: Download PDF


Recommended Topics:

How to check a website using CDN ? ↗
Saturday' 13-Mar-2021

Timelapse Screen Capture of TOFFEE-DataCenter Network Acceleration - with new RRDtool graph support ↗
Saturday' 13-Mar-2021
Timelapse Screen Capture of TOFFEE-DataCenter Network Acceleration - with new RRDtool graph support

Communication data network standards and data transfer speeds :: Chart ↗
Saturday' 13-Mar-2021
Here is a complete chart comprising popular communication data network standards and their respective transfer rates. I hope this reference chart will help network engineers and network software developers while performing networking tests and experiments, building WAN/network products, building WAN simulated networks of a specific standard and so on. This may also helps us to track technological advancements of communication data networks.

TOFFEE-Mocha Documentation :: TOFFEE-Mocha - Jitter feature ↗
Saturday' 13-Mar-2021

Raspberry Pi as a Networking Device ↗
Saturday' 13-Mar-2021
Raspberry Pi is often used as a single board computer for applications such as IoT, hobby projects, DIY, education aid, research and prototyping device. But apart from these applications Raspberry Pi can be used for real-world applications such as in making a full-fledged networking devices. Raspberry Pi is a single board ARM based hardware which is why it is also classified as ARM based SoC. Since it is ARM based it is highly efficient, tiny form-factor and lower in power consumption with moderate computational power. This will allow it to work several hours on emergency battery backup power supply such as low-cost domestic UPS and or some renewable energy source, which is a prerequisite for a typical networking device.

TOFFEE (and TOFFEE-DataCenter) optimized Satellite (inflight/marine/defense) ISP Networks ↗
Saturday' 13-Mar-2021
TOFFEE Optimized Satellite ISP Network: TOFFEE/TOFFEE-DataCenter can be used to optimize Satellite Networks (Satellite based Internet Networks, VoIP, Data, private leased-links) as shown. Ground station transponders can be connected via array of TOFFEE Devices and in the remote CPE can have dedicated or inbuilt TOFFEE with which you can establish a WAN Optimized Satellite Network Tunnel as shown.



TOFFEE DataCenter WAN Optimization - Google Hangouts demo and VOIP Optimization ↗
Saturday' 13-Mar-2021
TOFFEE DataCenter WAN Optimization - Google Hangouts demo and VOIP Optimization

TOFFEE-Butterscotch a TOFFEE for Home/SOHO Internet/WAN bandwidth ↗
Saturday' 13-Mar-2021
TOFFEE-Butterscotch a TOFFEE for Home/SOHO Internet/WAN bandwidth

TOFFEE deployment topology guide ↗
Saturday' 13-Mar-2021
Assume you have two sites (such as Site-A and Site-B) connected via slow/critical WAN link as shown below. You can optimize this link by saving the bandwidth as well possibly improve the speed. However, the WAN speed can be optimized only if the WAN link speeds are below that of the processing latency of your TOFFEE installed hardware. Assume your WAN link is 12Mbps, and assume the maximum WAN optimization speed/capacity of Raspberry Pi is 20Mbps, then your link will get speed optimization too. And in another case, assume your WAN link is 50Mbps, then using the Raspberry Pi as WAN Optimization device will actually increase the latency (i.e slows the WAN link). But in all the cases the bandwidth savings should be the same irrespective of the WAN link speed. In other words, if you want to cut down the WAN link costs via this WAN Optimization set up, you can always get it since it reduces the overall bandwidth in almost all the cases (including encrypted and pre-compressed data).

Network MTU research and optimization of WAN Links ↗
Saturday' 13-Mar-2021
Network MTU research and optimization of WAN Links



Featured Educational Video:
Watch on Youtube - [943//1] x23e TrueNAS ZFS Pool Resilver over and over again issue | ZFS NAS Storage | Forever Resilver ↗

TOFFEE-Mocha Documentation :: TOFFEE-Mocha-1.0.32-1-x86_64 and TOFFEE-Mocha-1.0.32-1-i386 ↗
Saturday' 13-Mar-2021

INDEX :: Content Delivery Networks or Content Distribution Networks (CDN) ↗
Saturday' 13-Mar-2021

TOFFEE (and TOFFEE-DataCenter) deployment in SD-WAN Applications ↗
Saturday' 13-Mar-2021
Software-Defined Wide Area Networking (SD-WAN) is a new innovative way to provide optimal application performance by redefining branch office networking. Unlike traditional expensive private WAN connection technologies such as MPLS, etc., SD-WAN delivers increased network performance and cost reduction. SD-WAN solution decouple network software services from the underlying hardware via software abstraction.

TOFFEE Benchmarks :: TOFFEE-1.1.28 ↗
Saturday' 13-Mar-2021
Here is the TOFFEE WAN Optimization benchmarks of the TOFFEE version: TOFFEE-1.1.28. This is the current TOFFEE development version till date (2-Jul-2016). This is a HPC TOFFEE variant meant for high-end custom build servers and high-end desktops (i.e High Performance Computing a.k.a HPC). TOFFEE built this way often needs customized kernel compilation and build such as processor specific and hardware specific tune-ups since it is highly CPU intensive (if not offloaded via Hardware Accelerator Cards).




How to check a website using CDN ? ↗
Saturday' 13-Mar-2021



Research :: Optimization of network data (WAN Optimization) at various levels:
Network File level network data WAN Optimization


Learn Linux Systems Software and Kernel Programming:
Linux, Kernel, Networking and Systems-Software online classes [CDN]


Hardware Compression and Decompression Accelerator Cards:
TOFFEE Architecture with Compression and Decompression Accelerator Card [CDN]


TOFFEE-DataCenter on a Dell Server - Intel Xeon E5645 CPU:
TOFFEE-DataCenter screenshots on a Dual CPU - Intel(R) Xeon(R) CPU E5645 @ 2.40GHz - Dell Server