O projeto TOFFEE
CASADOCUMENTAÇÃOATUALIZAÇÕESVÍDEOSPESQUISADESCARREGARPATROCINADORESCONTATO


DOCUMENTATION 》 TEST CASES :: TEST RESULTS :: TOFFEE-Mocha-1.0.14 Development version

Here are the TOFFEE-Mocha test cases and test results of the upcoming new TOFFEE-Mocha which is still under development. The features of this TOFFEE-Mocha are discussed in the software development update: TOFFEE-Mocha WAN Emulation software development - Update: 1-July-2016

Test case1 :: 999 millisecond constant packet delay: As you can see unlike 40 milliseconds the maximum limit which existed earlier, the new 999 milliseconds delay range allows users to slow down the transfer rates even further.

[email protected]:~/temp$ ping 192.168.0.1 -s 1000
PING 192.168.0.1 (192.168.0.1) 1000(1028) bytes of data.
1008 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=2000 ms
1008 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=2000 ms
1008 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=2000 ms
1008 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=2000 ms
1008 bytes from 192.168.0.1: icmp_seq=5 ttl=64 time=2998 ms
1008 bytes from 192.168.0.1: icmp_seq=6 ttl=64 time=2997 ms
1008 bytes from 192.168.0.1: icmp_seq=7 ttl=64 time=3995 ms
1008 bytes from 192.168.0.1: icmp_seq=8 ttl=64 time=3985 ms
1008 bytes from 192.168.0.1: icmp_seq=9 ttl=64 time=3984 ms
1008 bytes from 192.168.0.1: icmp_seq=10 ttl=64 time=3984 ms
1008 bytes from 192.168.0.1: icmp_seq=11 ttl=64 time=3983 ms
1008 bytes from 192.168.0.1: icmp_seq=12 ttl=64 time=3982 ms
1008 bytes from 192.168.0.1: icmp_seq=13 ttl=64 time=3984 ms
1008 bytes from 192.168.0.1: icmp_seq=14 ttl=64 time=3982 ms
^C
--- 192.168.0.1 ping statistics ---
18 packets transmitted, 14 received, 22% packet loss, time 17007ms
rtt min/avg/max/mdev = 2000.042/3277.214/3995.537/873.965 ms, pipe 4
[email protected]:~/temp$

Test case2 :: 500 millisecond constant packet delay: With 500 milliseconds you get roughly double the performance of 999 milliseconds.

[email protected]:~/temp$ ping 192.168.0.1 -s 1000
PING 192.168.0.1 (192.168.0.1) 1000(1028) bytes of data.
1008 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=5 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=6 ttl=64 time=1488 ms
1008 bytes from 192.168.0.1: icmp_seq=7 ttl=64 time=1481 ms
1008 bytes from 192.168.0.1: icmp_seq=8 ttl=64 time=1481 ms
1008 bytes from 192.168.0.1: icmp_seq=9 ttl=64 time=1008 ms
1008 bytes from 192.168.0.1: icmp_seq=10 ttl=64 time=1002 ms
^C
--- 192.168.0.1 ping statistics ---
11 packets transmitted, 10 received, 9% packet loss, time 10017ms
rtt min/avg/max/mdev = 1002.077/1147.151/1488.063/220.133 ms, pipe 2
[email protected]:~/temp$

Test case3 :: 500 millisecond constant packet delay + random packet delay: With constant delay (in this case 500 milliseconds) if you enable the new random packet delay feature, it will skip delay randomly few packets. Which can be controlled via random delay factor. In this case the random delay factor value is set to 1. And you can see below few packets are not delayed. Hence their ping response time almost reduced to half (i.e around 500 ms).

[email protected]:~/temp$ ping 192.168.0.1 -s 1000
PING 192.168.0.1 (192.168.0.1) 1000(1028) bytes of data.
1008 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=1503 ms
1008 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=1497 ms
1008 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=5 ttl=64 time=1001 ms
1008 bytes from 192.168.0.1: icmp_seq=6 ttl=64 time=1001 ms
1008 bytes from 192.168.0.1: icmp_seq=7 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=8 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=9 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=10 ttl=64 time=419 ms
1008 bytes from 192.168.0.1: icmp_seq=11 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=12 ttl=64 time=1001 ms
1008 bytes from 192.168.0.1: icmp_seq=13 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=14 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=15 ttl=64 time=1001 ms
1008 bytes from 192.168.0.1: icmp_seq=16 ttl=64 time=502 ms
1008 bytes from 192.168.0.1: icmp_seq=17 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=18 ttl=64 time=502 ms
1008 bytes from 192.168.0.1: icmp_seq=19 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=20 ttl=64 time=1001 ms
1008 bytes from 192.168.0.1: icmp_seq=21 ttl=64 time=1002 ms
^C
--- 192.168.0.1 ping statistics ---
22 packets transmitted, 21 received, 4% packet loss, time 21029ms
rtt min/avg/max/mdev = 419.093/974.135/1503.026/250.662 ms, pipe 2
[email protected]:~/temp$

Random Packet delay: As discussed in my VLOG/update earlier, the idea of Random packet delay is to introduce the fluctuating, bursty nature of packet flow. So here are various tests done which shows the same in action. These tests below are performed while downloading a large file by enabling random packet delay along with various values of constant packet delay.

Test case4 :: 2 millisecond constant packet delay + random packet delay: With constant delay of 2 millisecond and random packet delay you can notice the blue curve which almost appears constant. The traffic in this case is bursty but it is not that significant to notice in the graph shown below.
TOFFEE_Mocha_2ms_delay_with_random_packet_delay

Test case5 :: 10 millisecond constant packet delay + random packet delay: With constant delay of 10 millisecond and random packet delay you can notice the blue curve which almost appears constant. The traffic in this case is bursty but it is not that significant to notice in the graph shown below. But it appears somewhat fluctuating than the 5 millisecond test case4 above.
TOFFEE_Mocha_10ms_delay_with_random_packet_delay

Test case6 :: 200 millisecond constant packet delay + random packet delay: With constant delay of 200 millisecond and random packet delay you can notice the fluctuating blue curve. With this we can understand the true purpose of random packet delay.
TOFFEE_Mocha_200ms_delay_with_random_packet_delay

Test case7 :: 200 millisecond constant packet delay + WITHOUT random packet delay: With constant delay of 200 millisecond and WITHOUT random packet delay feature enabled you can notice the steady blue curve. This is a direct comparison of a test case with constant packet delay 200 millisecond with and without random packet delay. With random packet delay it makes the network performance choppy, fluctuating and bursty, but without random packet delay feature the network performance appears almost constant.
TOFFEE_Mocha_200ms_delay_without_random_packet_delay

So in my next upcoming TOFFEE-Mocha release I may include all these new features and updated old features. If you are in need of any specific feature (or scenario) you can kindly let know. If plausible and feasible I can support the same and release as a part of my upcoming TOFFEE-Mocha release. Kindly stay tuned !



Tópicos sugeridos:


TOFFEE-Mocha - WAN Emulator


Categories

💎 TOFFEE-MOCHA new bootable ISO: Download
💎 TOFFEE Data-Center Big picture and Overview: Download PDF


Tópicos recomendados:

TOFFEE Documentation :: TOFFEE-1.1.24-3-rpi2 ↗
Saturday' 13-Mar-2021
Here is my VLOG Youtube video of the same which includes details about version release notes, future road-map and so on. The TOFFEE release is highly optimized and customized for hardware platforms such as x86-64 based Intel NUC and other Intel mobile computing platforms such as laptops and so on. This version (or release) is not suited and so not recommended to be used for high-end desktop and server hardware platform.

Bulk Ping Tests - WAN Acceleration ↗
Saturday' 13-Mar-2021

CDN Introduction - Content Delivery Networks or Content Distribution Networks ↗
Saturday' 13-Mar-2021

TOFFEE-Butterscotch Bandwidth saver software development - Update: 28-Oct-2016 ↗
Saturday' 13-Mar-2021
Here is my first software development update of TOFFEE-Butterscotch. In my first TOFFEE-Butterscotch news update I have introduced about TOFFEE-Butterscotch research, project specifications, use-cases, etc. Introducing TOFFEE-Butterscotch Alerts: These are simple packet counters which corresponds to the filter type. For example if the incoming TCP-SYN packets are blocked then its corresponding alert counter will increment whenever such a packet arrives and gets filtered (dropped).

Internet optimization through TOFFEE-DataCenter WAN Optimization Demo ↗
Saturday' 13-Mar-2021
Internet optimization through TOFFEE-DataCenter WAN Optimization Demo

Off-Grid Home Lab Research Solar Installation ↗
Saturday' 13-Mar-2021

Assista no Youtube - [868//1] 280 WAN Optimization - Animated demo of Packet Optimization in TOFFEE-DataCenter ↗


TOFFEE (and TOFFEE-DataCenter) deployment in Large Infrastructure and or ISP Networks ↗
Saturday' 13-Mar-2021
Large Infrastructure or ISP setup: In case if you are an ISP and interested in deploying a large customer WAN Optimized network or an add-on enhanced (WAN Optimized) network for select few customers, then you can deploy something as shown below. Although this case is not meant for hobby/DIY users. This is a feasible solution for high-end professional application and the same can be deployed.

My Lab Battery Purchase and Service logs for Research ↗
Saturday' 13-Mar-2021
Here is a complete log of my lab battery purchase, service record which I maintain in Google drive. These I use for my home (or my family generic use) as well as a part of my home lab. I maintain a detailed log this way to monitor the failure rate of these batteries. This will allow me to select a specific brand/model which has higher success rate and to monitor any premature failure/expiry. The service log helps me to monitor and schedule the next service routine so that I can maintain these batteries in tip-top condition.

Benchmark Raspberry Pi and other embedded SoC with TrueBench ↗
Saturday' 13-Mar-2021
TrueBench is an unique open-source benchmarking system in which the core system performance and efficiency parameters are measured at extreme high resolution in the order of several million/billion µ-seconds for a given specific task. TrueBench is a part of The TOFFEE Project research. With TrueBench Raspberry Pi 3, Raspberry Pi 2B and Raspberry Pi 2 are benchmarked and you can do a comparative analysis with standard mainstream x86 devices.

Introducing TOFFEE-Butterscotch - Save and Optimize your Internet/WAN bandwidth ↗
Saturday' 13-Mar-2021
TOFFEE-Butterscotch yet another variant of TOFFEE can be used to save and optimize your Home/SOHO Internet/WAN bandwidth. Unlike TOFFEE (and TOFFEE-DataCenter) TOFFEE-Butterscotch is a non peer-to-peer (and asymmetric) network optimization solution. This makes TOFFEE-Butterscotch an ideal tool for all Home and SOHO users.



Featured Educational Video:
Assista no Youtube - [868//1] x23e TrueNAS ZFS Pool Resilver over and over again issue | ZFS NAS Storage | Forever Resilver ↗

TOFFEE (and TOFFEE-DataCenter) deployment in SD-WAN Applications ↗
Saturday' 13-Mar-2021
Software-Defined Wide Area Networking (SD-WAN) is a new innovative way to provide optimal application performance by redefining branch office networking. Unlike traditional expensive private WAN connection technologies such as MPLS, etc., SD-WAN delivers increased network performance and cost reduction. SD-WAN solution decouple network software services from the underlying hardware via software abstraction.

Upgrading Ubuntu 17.10 to 18.04 via TOFFEE-DataCenter WAN Optimization Screenshots ↗
Saturday' 13-Mar-2021

TOFFEE-DataCenter a TOFFEE variant for Data Center applications ↗
Saturday' 13-Mar-2021

Setting up a WAN Emulator within VirtualBox ↗
Saturday' 13-Mar-2021




Introducing TOFFEE-DataCenter ↗
Saturday' 13-Mar-2021
TOFFEE TOFFEE Data-Center is specifically meant for Data Center, Cluster Computing, HPC applications. TOFFEE is built in Linux Kernel core. This makes it inflexible to adapt according to the hardware configuration. It does sequential packet processing and does not scale up well in large multi-core CPU based systems (such as Intel Xeon servers, Core i7 Extreme Desktop systems,etc). Apart from this since it is kernel based, if there is an issue in kernel, it may crash entire system. This becomes a challenge for any carrier grade equipment (CGE) hardware build.



Research :: Optimization of network data (WAN Optimization) at various levels:
Network File level network data WAN Optimization


Learn Linux Systems Software and Kernel Programming:
Linux, Kernel, Networking and Systems-Software online classes [CDN]


Hardware Compression and Decompression Accelerator Cards:
TOFFEE Architecture with Compression and Decompression Accelerator Card


TOFFEE-DataCenter on a Dell Server - Intel Xeon E5645 CPU:
TOFFEE-DataCenter screenshots on a Dual CPU - Intel(R) Xeon(R) CPU E5645 @ 2.40GHz - Dell Server