O projeto TOFFEE
CASADOCUMENTAÇÃOATUALIZAÇÕESVÍDEOSPESQUISADESCARREGARPATROCINADORESCONTATO


DOCUMENTATION 》 TEST CASES :: TEST RESULTS :: TOFFEE-Mocha-1.0.14 Development version

Here are the TOFFEE-Mocha test cases and test results of the upcoming new TOFFEE-Mocha which is still under development. The features of this TOFFEE-Mocha are discussed in the software development update: TOFFEE-Mocha WAN Emulation software development - Update: 1-July-2016

Test case1 :: 999 millisecond constant packet delay: As you can see unlike 40 milliseconds the maximum limit which existed earlier, the new 999 milliseconds delay range allows users to slow down the transfer rates even further.

kiran@HP-ENVY-15:~/temp$ ping 192.168.0.1 -s 1000
PING 192.168.0.1 (192.168.0.1) 1000(1028) bytes of data.
1008 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=2000 ms
1008 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=2000 ms
1008 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=2000 ms
1008 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=2000 ms
1008 bytes from 192.168.0.1: icmp_seq=5 ttl=64 time=2998 ms
1008 bytes from 192.168.0.1: icmp_seq=6 ttl=64 time=2997 ms
1008 bytes from 192.168.0.1: icmp_seq=7 ttl=64 time=3995 ms
1008 bytes from 192.168.0.1: icmp_seq=8 ttl=64 time=3985 ms
1008 bytes from 192.168.0.1: icmp_seq=9 ttl=64 time=3984 ms
1008 bytes from 192.168.0.1: icmp_seq=10 ttl=64 time=3984 ms
1008 bytes from 192.168.0.1: icmp_seq=11 ttl=64 time=3983 ms
1008 bytes from 192.168.0.1: icmp_seq=12 ttl=64 time=3982 ms
1008 bytes from 192.168.0.1: icmp_seq=13 ttl=64 time=3984 ms
1008 bytes from 192.168.0.1: icmp_seq=14 ttl=64 time=3982 ms
^C
--- 192.168.0.1 ping statistics ---
18 packets transmitted, 14 received, 22% packet loss, time 17007ms
rtt min/avg/max/mdev = 2000.042/3277.214/3995.537/873.965 ms, pipe 4
kiran@HP-ENVY-15:~/temp$

Test case2 :: 500 millisecond constant packet delay: With 500 milliseconds you get roughly double the performance of 999 milliseconds.

kiran@HP-ENVY-15:~/temp$ ping 192.168.0.1 -s 1000
PING 192.168.0.1 (192.168.0.1) 1000(1028) bytes of data.
1008 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=5 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=6 ttl=64 time=1488 ms
1008 bytes from 192.168.0.1: icmp_seq=7 ttl=64 time=1481 ms
1008 bytes from 192.168.0.1: icmp_seq=8 ttl=64 time=1481 ms
1008 bytes from 192.168.0.1: icmp_seq=9 ttl=64 time=1008 ms
1008 bytes from 192.168.0.1: icmp_seq=10 ttl=64 time=1002 ms
^C
--- 192.168.0.1 ping statistics ---
11 packets transmitted, 10 received, 9% packet loss, time 10017ms
rtt min/avg/max/mdev = 1002.077/1147.151/1488.063/220.133 ms, pipe 2
kiran@HP-ENVY-15:~/temp$

Test case3 :: 500 millisecond constant packet delay + random packet delay: With constant delay (in this case 500 milliseconds) if you enable the new random packet delay feature, it will skip delay randomly few packets. Which can be controlled via random delay factor. In this case the random delay factor value is set to 1. And you can see below few packets are not delayed. Hence their ping response time almost reduced to half (i.e around 500 ms).

kiran@HP-ENVY-15:~/temp$ ping 192.168.0.1 -s 1000
PING 192.168.0.1 (192.168.0.1) 1000(1028) bytes of data.
1008 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=1503 ms
1008 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=1497 ms
1008 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=5 ttl=64 time=1001 ms
1008 bytes from 192.168.0.1: icmp_seq=6 ttl=64 time=1001 ms
1008 bytes from 192.168.0.1: icmp_seq=7 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=8 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=9 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=10 ttl=64 time=419 ms
1008 bytes from 192.168.0.1: icmp_seq=11 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=12 ttl=64 time=1001 ms
1008 bytes from 192.168.0.1: icmp_seq=13 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=14 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=15 ttl=64 time=1001 ms
1008 bytes from 192.168.0.1: icmp_seq=16 ttl=64 time=502 ms
1008 bytes from 192.168.0.1: icmp_seq=17 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=18 ttl=64 time=502 ms
1008 bytes from 192.168.0.1: icmp_seq=19 ttl=64 time=1002 ms
1008 bytes from 192.168.0.1: icmp_seq=20 ttl=64 time=1001 ms
1008 bytes from 192.168.0.1: icmp_seq=21 ttl=64 time=1002 ms
^C
--- 192.168.0.1 ping statistics ---
22 packets transmitted, 21 received, 4% packet loss, time 21029ms
rtt min/avg/max/mdev = 419.093/974.135/1503.026/250.662 ms, pipe 2
kiran@HP-ENVY-15:~/temp$

Random Packet delay: As discussed in my VLOG/update earlier, the idea of Random packet delay is to introduce the fluctuating, bursty nature of packet flow. So here are various tests done which shows the same in action. These tests below are performed while downloading a large file by enabling random packet delay along with various values of constant packet delay.

Test case4 :: 2 millisecond constant packet delay + random packet delay: With constant delay of 2 millisecond and random packet delay you can notice the blue curve which almost appears constant. The traffic in this case is bursty but it is not that significant to notice in the graph shown below.
TOFFEE_Mocha_2ms_delay_with_random_packet_delay

Test case5 :: 10 millisecond constant packet delay + random packet delay: With constant delay of 10 millisecond and random packet delay you can notice the blue curve which almost appears constant. The traffic in this case is bursty but it is not that significant to notice in the graph shown below. But it appears somewhat fluctuating than the 5 millisecond test case4 above.
TOFFEE_Mocha_10ms_delay_with_random_packet_delay

Test case6 :: 200 millisecond constant packet delay + random packet delay: With constant delay of 200 millisecond and random packet delay you can notice the fluctuating blue curve. With this we can understand the true purpose of random packet delay.
TOFFEE_Mocha_200ms_delay_with_random_packet_delay

Test case7 :: 200 millisecond constant packet delay + WITHOUT random packet delay: With constant delay of 200 millisecond and WITHOUT random packet delay feature enabled you can notice the steady blue curve. This is a direct comparison of a test case with constant packet delay 200 millisecond with and without random packet delay. With random packet delay it makes the network performance choppy, fluctuating and bursty, but without random packet delay feature the network performance appears almost constant.
TOFFEE_Mocha_200ms_delay_without_random_packet_delay

So in my next upcoming TOFFEE-Mocha release I may include all these new features and updated old features. If you are in need of any specific feature (or scenario) you can kindly let know. If plausible and feasible I can support the same and release as a part of my upcoming TOFFEE-Mocha release. Kindly stay tuned !



Tópicos sugeridos:


TOFFEE-Mocha - WAN Emulator


Categories

💎 TOFFEE-MOCHA new bootable ISO: Download
💎 TOFFEE Data-Center Big picture and Overview: Download PDF


Tópicos recomendados:

PiPG - Raspberry Pi Network Packet Generator ↗
Saturday' 13-Mar-2021
PiPG is a powerful and yet simple Raspberry Pi Network Packet Generator. With PiPG you can now fabricate custom network packets and send via any Network Interface. Supports all kinds of standard Network Ports (Linux Kernel driver generated) such as Physical Network Interface ports, and an array of virtual ports such as loopback, tun/tap, bridge, etc. indispensable tool for: Network Debugging, Testing and Performance analysis Network Administrators Students Network R&D Protocol Analysis and Study Network Software Development Compliance Testing Ethical Hackers you can generate the following test traffic: L2-Bridging/Slow protocols: STP, LACP, OAM, LLDP, EAP, etc Routing protocols: RIPv1, RIPv2, IGMPv1, IGMPv2, OSPF, IS-IS, EIGRP, HSRP, VRRP, etc Proprietary protocols: CISCO, etc Generic: IPv4 TCP/UDP, etc Malformed random packets

Introducing TrueBench - a high resolution CPU benchmarking system ↗
Saturday' 13-Mar-2021
TrueBench is an unique open-source benchmarking system in which the core system performance and efficiency parameters are measured at extreme high resolution in the order of several million/billion µ-seconds for a given specific task. TrueBench is a part of The TOFFEE Project research. With TrueBench Raspberry Pi 3, Raspberry Pi 2B, Raspberry Pi 2 and other embedded SoC devices are benchmarked and you can do a comparative analysis with standard mainstream x86 devices.

Network Latency in WAN Networks and performance optimization ↗
Saturday' 13-Mar-2021
Here is my video article on Network Latency in WAN Networks (such as long distance Satellite links, etc) and how you can optimize the same to achieve better network performance.

Building my own CDN - Google PageSpeed Insights - Update: 22-Jul-2016 ↗
Saturday' 13-Mar-2021
Ever since after I launched my new The TOFFEE Project website on 1-May'2016, I can see there is a steep increase in traffic. Soon after the launch when I monitored its Alexa rankings it was reporting about 12 Million or so. But once it is getting more and more traffic the Alexa rankings shot up and now currently it shows around 2 Million (as on 22-July-2016). Alexa is an excellent tool to monitor your overall website global ranking and indirectly its performance. Unlike Google Analytics which is bound one or other way into Google's SEO. Alexa gives you a second opinion about your website's growth.

Tracking Live Network Application Data - in a WAN Acceleration (WAN Optimization) Device ↗
Saturday' 13-Mar-2021

TOFFEE DataCenter WAN Optimization - Google Hangouts demo and VOIP Optimization ↗
Saturday' 13-Mar-2021
TOFFEE DataCenter WAN Optimization - Google Hangouts demo and VOIP Optimization

Assista no Youtube - [889//1] 280 WAN Optimization - Animated demo of Packet Optimization in TOFFEE-DataCenter ↗


TrueBench - Linux CPU Benchmarking system ↗
Saturday' 13-Mar-2021
TrueBench is an unique open-source benchmarking system in which the core system performance and efficiency parameters are measured at extreme high resolution in the order of several million/billion µ-seconds for a given specific task. TrueBench is a part of The TOFFEE Project research.

TOFFEE-Butterscotch Bandwidth saver software development - Update: 17-Nov-2016 ↗
Saturday' 13-Mar-2021
Here is my second software development update of TOFFEE-Butterscotch. In the previous update (28-Oct-2016) I discussed about the Alerts, etc. Whereas in my first TOFFEE-Butterscotch news update I have introduced about TOFFEE-Butterscotch research, project specifications, use-cases, etc.

The TOFFEE Project :: TOFFEE-Mocha :: WAN Emulator ↗
Saturday' 13-Mar-2021
The TOFFEE Project :: TOFFEE-Mocha :: Linux Open-Source WAN Emulator

Off-Grid Solar Power System for Raspberry Pi ↗
Saturday' 13-Mar-2021
When you choose to use your Raspberry Pi device as your IoT based remote weather station or if you are building Linux kernel (like kernel compilation) within the same, you need a good uninterrupted power source (UPS). But if you are using it on site or in some research camping location you can choose to power your Raspberry Pi device with your custom off-grid solar power source.



Featured Educational Video:
Assista no Youtube - [4073//1] 0x1c9 NAS OS | Expert's take on FreeNAS vs UNRAID | My two cents | Best Tips ↗

TOFFEE-Mocha WAN Emulator Jitter Feature ↗
Saturday' 13-Mar-2021

Building my own CDN - Google PageSpeed Insights - Update: 22-Jul-2016 ↗
Saturday' 13-Mar-2021
Ever since after I launched my new The TOFFEE Project website on 1-May'2016, I can see there is a steep increase in traffic. Soon after the launch when I monitored its Alexa rankings it was reporting about 12 Million or so. But once it is getting more and more traffic the Alexa rankings shot up and now currently it shows around 2 Million (as on 22-July-2016). Alexa is an excellent tool to monitor your overall website global ranking and indirectly its performance. Unlike Google Analytics which is bound one or other way into Google's SEO. Alexa gives you a second opinion about your website's growth.

Riverbed and Silver Peak WAN Optimization vs TOFFEE-DataCenter (TOFFEE and or TrafficSqueezer) - FAQ ↗
Saturday' 13-Mar-2021

My Lab Battery Purchase and Service logs for Research ↗
Saturday' 13-Mar-2021
Here is a complete log of my lab battery purchase, service record which I maintain in Google drive. These I use for my home (or my family generic use) as well as a part of my home lab. I maintain a detailed log this way to monitor the failure rate of these batteries. This will allow me to select a specific brand/model which has higher success rate and to monitor any premature failure/expiry. The service log helps me to monitor and schedule the next service routine so that I can maintain these batteries in tip-top condition.



Assista no Youtube - [889//1] 280 WAN Optimization - Animated demo of Packet Optimization in TOFFEE-DataCenter ↗

Introducing TOFFEE-Fudge - Network Packet Generator ↗
Saturday' 13-Mar-2021
TOFFEE Fudge is a simple intuitive Network Packet Generator which can be used to create custom test synthetic Network Packets and can be used in various applications such as networking research, network infrastructure troubleshooting, ethical hacking, as a network software development tool and so on.



Research :: Optimization of network data (WAN Optimization) at various levels:
Network File level network data WAN Optimization


Learn Linux Systems Software and Kernel Programming:
Linux, Kernel, Networking and Systems-Software online classes [CDN]


Hardware Compression and Decompression Accelerator Cards:
TOFFEE Architecture with Compression and Decompression Accelerator Card


TOFFEE-DataCenter on a Dell Server - Intel Xeon E5645 CPU:
TOFFEE-DataCenter screenshots on a Dual CPU - Intel(R) Xeon(R) CPU E5645 @ 2.40GHz - Dell Server