Проект TOFFEE
ГЛАВНАЯДОКУМЕНТАЦИЯОБНОВЛЕНИЕВИДЕОИССЛЕДОВАНИЕСКАЧАТЬСПОНСОРЫконтакт


DOCUMENTATION 》 TEST CASES :: TEST RESULTS :: TOFFEE-Mocha-1.0.32 asymmetric constant packet delay feature

Here are the TOFFEE-Mocha test cases and test results of new asymmetric constant packet delay feature supported in the new TOFFEE-Mocha-1.0.32 release. Click HERE to download TOFFEE-Mocha-1.0.32-1-x86_64.tar.xz and TOFFEE-Mocha-1.0.32-1-i386.tar.xz.

Here is my test network topology:
TOFFEE-Mocha asymmetric packet delay test setup

Test case1 :: no packet delay: This is a reference test with no packet delay.
TOFFEE-Mocha-1.0.32 WAN Emulator network test tool Test case1 - no packet delay

kiran@WD-250GB:~$ ping 192.168.0.1
PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=1.34 ms
64 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=1.34 ms
64 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=1.36 ms
64 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=1.43 ms
^C
--- 192.168.0.1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 1.343/1.372/1.432/0.057 ms
kiran@WD-250GB:~$

Test case2 :: 1ms per packet delay: This will enable 1ms constant packet delay for all packets (i.e upstream and downstream).
TOFFEE-Mocha-1.0.32 WAN Emulator network test tool Test case2 - 1ms per packet delay

kiran@WD-250GB:~$ ping 192.168.0.1
PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=3.38 ms
64 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=3.28 ms
64 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=3.49 ms
64 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=3.34 ms
^C
--- 192.168.0.1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 3.288/3.377/3.493/0.094 ms
kiran@WD-250GB:~$

Test case3 :: 1ms upload alone packet delay: This will enable 1ms constant packet delay for all upstream packets alone.
TOFFEE-Mocha-1.0.32 WAN Emulator network test tool Test case3 - 1ms upload alone packet delay

kiran@WD-250GB:~$ ping 192.168.0.1
PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=2.49 ms
64 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=2.51 ms
64 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=2.32 ms
64 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=2.30 ms
^C
--- 192.168.0.1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 2.300/2.408/2.515/0.108 ms
kiran@WD-250GB:~$

Test case4 :: 1ms download alone packet delay: This will enable 1ms constant packet delay for all downstream packets alone.
TOFFEE-Mocha-1.0.32 WAN Emulator network test tool Test case4 - 1ms download alone packet delay

kiran@WD-250GB:~$ ping 192.168.0.1
PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=2.31 ms
64 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=2.33 ms
64 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=2.41 ms
64 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=2.41 ms
^C
--- 192.168.0.1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 2.313/2.367/2.416/0.067 ms
kiran@WD-250GB:~$

Test case5 :: 1ms download packet delay + 1ms per packet delay: This will enable 1ms constant packet delay for all downstream packets along with constant 1ms per-packet delay.
TOFFEE-Mocha-1.0.32 WAN Emulator network test tool Test case5 - 1ms download packet delay + 1ms per packet delay

kiran@WD-250GB:~$ ping 192.168.0.1
PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=4.36 ms
64 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=4.34 ms
64 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=4.43 ms
64 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=4.46 ms
^C
--- 192.168.0.1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 4.342/4.401/4.465/0.049 ms
kiran@WD-250GB:~$

Test case6 :: 1ms upload packet delay + 1ms per packet delay: This will enable 1ms constant packet delay for all upstream packets along with constant 1ms per-packet delay.
TOFFEE-Mocha-1.0.32 WAN Emulator network test tool Test case6 - 1ms upload packet delay + 1ms per packet delay

kiran@WD-250GB:~$ ping 192.168.0.1
PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=4.26 ms
64 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=4.46 ms
64 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=4.35 ms
64 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=4.47 ms
^C
--- 192.168.0.1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3003ms
rtt min/avg/max/mdev = 4.260/4.389/4.472/0.087 ms
kiran@WD-250GB:~$

Test case7 :: 1ms upload packet delay + 1ms download packet delay + 1ms per packet delay: This will enable 1ms constant packet delay for all upstream and downstream packets along with constant 1ms per-packet delay.
TOFFEE-Mocha-1.0.32 WAN Emulator network test tool Test case7 - 1ms upload packet delay + 1ms download packet delay + 1ms per packet delay

kiran@WD-250GB:~$ ping 192.168.0.1
PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=5.26 ms
64 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=5.41 ms
64 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=5.66 ms
64 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=5.31 ms
64 bytes from 192.168.0.1: icmp_seq=5 ttl=64 time=5.37 ms
64 bytes from 192.168.0.1: icmp_seq=6 ttl=64 time=5.29 ms
64 bytes from 192.168.0.1: icmp_seq=7 ttl=64 time=5.41 ms
^C
--- 192.168.0.1 ping statistics ---
7 packets transmitted, 7 received, 0% packet loss, time 6009ms
rtt min/avg/max/mdev = 5.260/5.391/5.662/0.130 ms
kiran@WD-250GB:~$



Предлагаемые темы:


TOFFEE-Mocha - WAN Emulator


Categories

💎 TOFFEE-MOCHA new bootable ISO: Download
💎 TOFFEE Data-Center Big picture and Overview: Download PDF


Рекомендуемые темы:

TOFFEE (and TOFFEE-DataCenter) optimized Wireless Mesh-Networks - B.A.T.M.A.N [open-mesh.org (Open Mesh)] ↗
Saturday' 13-Mar-2021
TOFFEE/TOFFEE-DataCenter can be used to optimize Ad-Hoc Mobile Wireless Mesh-Networks. To learn more about the same here are some references: B.A.T.M.A.N. - https://en.wikipedia.org/wiki/B.A.T.M.A.N. Mobile ad hoc network (MANET) - https://en.wikipedia.org/wiki/Mobile_ad_hoc_network Wireless ad hoc network (WANET) - https://en.wikipedia.org/wiki/Wireless_ad_hoc_network open-mesh.org (Open Mesh) Wiki - https://www.open-mesh.org/projects/open-mesh/wiki

PiPG - Raspberry Pi Network Packet Generator ↗
Saturday' 13-Mar-2021
PiPG is a powerful and yet simple Raspberry Pi Network Packet Generator. With PiPG you can now fabricate custom network packets and send via any Network Interface. Supports all kinds of standard Network Ports (Linux Kernel driver generated) such as Physical Network Interface ports, and an array of virtual ports such as loopback, tun/tap, bridge, etc. indispensable tool for: Network Debugging, Testing and Performance analysis Network Administrators Students Network R&D Protocol Analysis and Study Network Software Development Compliance Testing Ethical Hackers you can generate the following test traffic: L2-Bridging/Slow protocols: STP, LACP, OAM, LLDP, EAP, etc Routing protocols: RIPv1, RIPv2, IGMPv1, IGMPv2, OSPF, IS-IS, EIGRP, HSRP, VRRP, etc Proprietary protocols: CISCO, etc Generic: IPv4 TCP/UDP, etc Malformed random packets

First TOFFEE-Butterscotch Code Release ↗
Saturday' 13-Mar-2021
TOFFEE-Butterscotch is a variant of TOFFEE can be used to save and optimize your Home/SOHO Internet/WAN bandwidth. Unlike TOFFEE (and TOFFEE-DataCenter) TOFFEE-Butterscotch is a non peer-to-peer (and asymmetric) network optimization solution. This makes TOFFEE-Butterscotch an ideal tool for all Home and SOHO users.

TOFFEE-DataCenter :: Features Supported ↗
Saturday' 13-Mar-2021
Here is a list of TOFFEE-DataCenter features supported. TOFFEE-DataCenter currently supports some of the important features such as loss-less network data compression, Packet Deduplication (protocols/applications supported), Application Acceleration, TCP Acceleration, dynamic MTU optimization, data packaging, hardware offload support, etc.

First TOFFEE Code Release ↗
Saturday' 13-Mar-2021
I started working on the new TOFFEE project (which is the fork of my earlier TrafficSqueezer open-source project) starting from 1st January 2016 onwards. Ever since I was busy in research and altering certain old features so that it is more minimal than TrafficSqueezer, a more focused agenda, deliver refined code and a broader vision. I have lined up more things to follow in the upcoming months. I want to focus about all aspects of WAN communication technologies not just on core WAN Optimization research and technology.

The TOFFEE Project :: TOFFEE-Butterscotch :: Save and Optimize your Internet/WAN bandwidth ↗
Saturday' 13-Mar-2021
TOFFEE-Butterscotch is an open-source software which can be used to save and optimize your Internet/WAN bandwidth. Unlike TOFFEE (and TOFFEE-DataCenter) TOFFEE-Butterscotch is a non peer-to-peer (and asymmetric) network optimization solution. This makes TOFFEE-Butterscotch an ideal tool for all Home and SOHO users.



TOFFEE-Mocha WAN emulator Lab deployment and topology guide ↗
Saturday' 13-Mar-2021

TOFFEE-DataCenter as a VNF for NFV ↗
Saturday' 13-Mar-2021

TrueBench - Linux CPU Benchmarking system ↗
Saturday' 13-Mar-2021
TrueBench is an unique open-source benchmarking system in which the core system performance and efficiency parameters are measured at extreme high resolution in the order of several million/billion µ-seconds for a given specific task. TrueBench is a part of The TOFFEE Project research.

Setting up a WAN Emulator within VirtualBox ↗
Saturday' 13-Mar-2021



Featured Educational Video:
Watch on Youtube - [4073//1] 0x1c9 NAS OS | Expert's take on FreeNAS vs UNRAID | My two cents | Best Tips ↗

TOFFEE (and TOFFEE-DataCenter) optimized Wireless Mesh-Networks - B.A.T.M.A.N [open-mesh.org (Open Mesh)] ↗
Saturday' 13-Mar-2021
TOFFEE/TOFFEE-DataCenter can be used to optimize Ad-Hoc Mobile Wireless Mesh-Networks. To learn more about the same here are some references: B.A.T.M.A.N. - https://en.wikipedia.org/wiki/B.A.T.M.A.N. Mobile ad hoc network (MANET) - https://en.wikipedia.org/wiki/Mobile_ad_hoc_network Wireless ad hoc network (WANET) - https://en.wikipedia.org/wiki/Wireless_ad_hoc_network open-mesh.org (Open Mesh) Wiki - https://www.open-mesh.org/projects/open-mesh/wiki

Building my own CDN - Moving away from Joomla to non-Joomla website - Update: 01-Oct-2016 ↗
Saturday' 13-Mar-2021
Seems there are couple of Inmotionhosting servers are down. And one of the server includes The TOFFEE Project website hosted server. I was in touch with the Inmotionhosting team trying to resolve the same. I found a unique issue that all my website files are intact and the Joomla database. But the Joomla database tables are completely wiped out and missing. Besides there is also a sort of upgrade going on in their servers. Luckily I have the most recent backup of the entire website.

TOFFEE-Mocha WAN Emulation software development - Update: 20-Oct-2016 ↗
Saturday' 13-Mar-2021
I was doing some specific tests in my TOFFEE and TOFFEE-DataCenter (WAN optimization) scenarios such as variable upload and download speeds. And I was also doing some experiments with speedtest.net and I did some of these tests with TOFFEE-Mocha. I realized there is a case that I can introduce asymmetric constant delays so that you can get different download speed and a different upload speed. And in some cases much faster download speeds and relatively slower upload speeds.

Tracking Live TCP Sessions (connections) - WAN Optimization Device ↗
Saturday' 13-Mar-2021



Watch on Youtube - [466//1] 158 VLOG - TOFFEE WAN Optimization Software Development live update - 6-Nov-2016 ↗

TOFFEE-DataCenter WAN Optimization software development - Update: 19-Aug-2016 ↗
Saturday' 13-Mar-2021
This is my next software development update of TOFFEE-DataCenter which I am working since past few weeks. I was very busy in implementing the core TOFFEE-DataCenter components along with prototyping, benchmarking, implementing and testing the same. However today is the first time ever I did a fresh new CLI interface for the upcoming new TOFFEE-DataCenter.



Research :: Optimization of network data (WAN Optimization) at various levels:
Network File level network data WAN Optimization


Learn Linux Systems Software and Kernel Programming:
Linux, Kernel, Networking and Systems-Software online classes


Hardware Compression and Decompression Accelerator Cards:
TOFFEE Architecture with Compression and Decompression Accelerator Card


TOFFEE-DataCenter on a Dell Server - Intel Xeon E5645 CPU:
TOFFEE-DataCenter screenshots on a Dual CPU - Intel(R) Xeon(R) CPU E5645 @ 2.40GHz - Dell Server