TOFFEEプロジェクト
ホームドキュメンテーション更新ビデオ研究ダウンロードスポンサー接触


RESEARCH 》 CDN Introduction - Content Delivery Networks or Content Distribution Networks

A Website without CDN Network: As everyone knows in a most common typical simplest scenario, you will have a website hosted in a web-server. In most common cases a typical small website will be hosted in some web-server, provided by web-hosting service provider. And the website DNS domain name points to this hosting web-server. In a simple scenario like this when the user requests the pages (or in general we can say any content such as text pages, images, and other media), the end-user’s browser request reaches this web-server, and the web-server delivers the web-pages via HTTP Protocol.
CDN Introduction website without CDN

Local user Browser Cache: The process of page or content download is pretty straight forward in a web-browser. A web-browser will have a small local cache. So that if there is any future repetitive requests, instead each time fetching from the main website (web-server), the browser will load/render the pre-cached content directly in the browser interface if it finds that specific content already once stored earlier in its cache. This saves up a lot of traffic. Since most of the times any website will have a lot of common content, such as logos, some Java scripts, CSS Stylesheets and so on. But the only drawback is that if there is a small organization, then each user have to access the content atleast once, so that they get their browser cache stored with content. In this case it is a highly discrete or non-shared cache platform/scenario.

Local web Proxy/Caching Servers: So in a office, or any such setup, where there are N users accessing common Internet resource, we can deploy a common web proxy or caching server(s). These servers (or a server) will create a great opportunity of creating a localized common caching scenario. So in this mode assume if one user accesses a website for first time, assume few of its contents are cached in this caching server, then later that day whichever other user accesses the same content, they may receive cached content from this central caching/proxy server. This is a huge advantage. Once the cache is mature and holds enough cached contents, it will sometimes exponentially reduce the network load, and downloading repetitive data from Internet (or any network in general).

A Website via CDN Network: In this scenario, the main basic website acts much like a source or origin. It will contain the web-content but it will not serve the real end-users. Instead there is going to be a CDN Service provider, and his vast infrastructure with several distributed, so called CDN Nodes across Internet spread globally. When the end-user requests the website, it is these CDN caching nodes will actually server the content to the end users. The job of the CDN service provider is to provide a highly redundant load-sharing along with transparent/abstract infrastructure. The CDN provider will often point or assign a CDN node which is least used at that instance, also sometimes assigns dynamically a CDN Node which is geographically nearer to the end-user. Hence this reduces the download time, since it reduces the number of router hops in internet.
CDN Introduction website with CDN

A CDN Node is often a highly proprietary caching resource installed by the CDN Service provider, where when it gets a request of a content to be served from end-user browsers, it caches the pages/content from its neighboring CDN Nodes, or sometimes directly from the origin web-servers. So this will exponentially reduces the load on the origin webserver. It is like with CDN server, the load on the origin webserver is or can be reduced upto 70-80% or sometimes even more depending on the content nature and depending on static vs. dynamic content it has.

So this is how a basic CDN works, its significance and value addition for any website if it is served to users via CDN, versus served directly via single webserver (or just few redundant web-servers) without a CDN.

Apart from this there are various advantages in using a CDN within your deployments. To know more about CDN Advantages kindly read the full detailed article HERE.



Suggested Topics:


Generic CDN


Building my own CDN

💎 TOFFEE-MOCHA new bootable ISO: Download
💎 TOFFEE Data-Center Big picture and Overview: Download PDF


おすすめトピック:

Internet optimization through TOFFEE-DataCenter WAN Optimization Demo ↗
Saturday' 13-Mar-2021
Internet optimization through TOFFEE-DataCenter WAN Optimization Demo

TOFFEE-Butterscotch Bandwidth saver software development - Update: 17-Nov-2016 ↗
Saturday' 13-Mar-2021
Here is my second software development update of TOFFEE-Butterscotch. In the previous update (28-Oct-2016) I discussed about the Alerts, etc. Whereas in my first TOFFEE-Butterscotch news update I have introduced about TOFFEE-Butterscotch research, project specifications, use-cases, etc.

Bitcoin Mining - Blockchain Technology - Network Optimization via TOFFEE Data-Center WAN Optimization ↗
Saturday' 13-Mar-2021
Bitcoin Mining - Blockchain Technology - Network Optimization via TOFFEE Data-Center WAN Optimization

TOFFEE-Mocha Documentation :: TOFFEE-Mocha-1.0.32-1-x86_64 and TOFFEE-Mocha-1.0.32-1-i386 ↗
Saturday' 13-Mar-2021

TCP Tune-up and Performance Analysis Graphs - Congestion Control - Research - Dos and Don'ts ↗
Saturday' 13-Mar-2021

Live demo - Data Transfer - High bandwidth to Low bandwidth ↗
Saturday' 13-Mar-2021
I always wanted to do some real experiments and research on packet flow patterns from High-bandwidth to Low-bandwidth networks via networking devices. This is something can be analyzed via capturing Network stack buffer data and other parameters, bench-marking, and so on. But eventually the data-transfer nature and other aspects is often contaminated due to the underlying OS and the way Network stack is implemented. So to understand the nature of packet flow from Higher to Lower bandwidth and vice-versa such as Lower to higher bandwidth, I thought I experiment with various tools and things which physically we can observe this phenomena.

Youtubeで見る - [1888//1] Deep Space Communication - Episode1 - Introduction ↗


Why TOFFEE is forked from TrafficSqueezer ↗
Saturday' 13-Mar-2021
TrafficSqueezer is an open-source WAN Optimization project. TrafficSqueezer is mainly a research project which is started around mid-2006. It is initially started as a research (or prototype) code even before it is officially registered in Sourceforge.net. But this code is just primitive user-space raw socket modules. This is later refined and a pre-alpha version is created. Followed by which Alpha release. This prototype code is moved from user-space to Linux Kernel (Kernel Space) and then the journey begin in terms of making a serious WAN Optimization solution. Once the pre-beta and beta releases are complete the mainstream series is started.

CDN Introduction - Content Delivery Networks or Content Distribution Networks ↗
Saturday' 13-Mar-2021

iPerf Network Optimization - WAN Optimization Demo ↗
Saturday' 13-Mar-2021

TOFFEE-Mocha Documentation :: TOFFEE-Mocha-1.0.14-1-rpi2 - Raspberry Pi WAN Emulator ↗
Saturday' 13-Mar-2021



Featured Educational Video:
Youtubeで見る - [1836//1] x257 tp-link UE300 Linux Kernel Realtek Driver Codewalk rtl8153a-3 r8152 USB 3.0 to Gigabit - Part1 ↗

TOFFEE deployment topology guide ↗
Saturday' 13-Mar-2021
Assume you have two sites (such as Site-A and Site-B) connected via slow/critical WAN link as shown below. You can optimize this link by saving the bandwidth as well possibly improve the speed. However, the WAN speed can be optimized only if the WAN link speeds are below that of the processing latency of your TOFFEE installed hardware. Assume your WAN link is 12Mbps, and assume the maximum WAN optimization speed/capacity of Raspberry Pi is 20Mbps, then your link will get speed optimization too. And in another case, assume your WAN link is 50Mbps, then using the Raspberry Pi as WAN Optimization device will actually increase the latency (i.e slows the WAN link). But in all the cases the bandwidth savings should be the same irrespective of the WAN link speed. In other words, if you want to cut down the WAN link costs via this WAN Optimization set up, you can always get it since it reduces the overall bandwidth in almost all the cases (including encrypted and pre-compressed data).

TEST CASES :: TEST RESULTS :: Raspberry Pi WAN Emulator TOFFEE-Mocha-1.0.14-1-rpi2 ↗
Saturday' 13-Mar-2021

TOFFEE-Mocha Documentation :: TOFFEE-Mocha-1.0.18-1-x86_64 ↗
Saturday' 13-Mar-2021

Demo TOFFEE-DataCenter WAN Optimization packaging feature ↗
Saturday' 13-Mar-2021




The TOFFEE Project :: TOFFEE-DataCenter :: WAN Optimization ↗
Saturday' 13-Mar-2021
The TOFFEE Project :: TOFFEE-DataCenter :: Linux Open-Source WAN Optimization



Research :: Optimization of network data (WAN Optimization) at various levels:
Network File level network data WAN Optimization


Learn Linux Systems Software and Kernel Programming:
Linux, Kernel, Networking and Systems-Software online classes [CDN]


Hardware Compression and Decompression Accelerator Cards:
TOFFEE Architecture with Compression and Decompression Accelerator Card [CDN]


TOFFEE-DataCenter on a Dell Server - Intel Xeon E5645 CPU:
TOFFEE-DataCenter screenshots on a Dual CPU - Intel(R) Xeon(R) CPU E5645 @ 2.40GHz - Dell Server