The TOFFEE Project

RESEARCH 》 CDN Introduction - Content Delivery Networks or Content Distribution Networks

A Website without CDN Network: As everyone knows in a most common typical simplest scenario, you will have a website hosted in a web-server. In most common cases a typical small website will be hosted in some web-server, provided by web-hosting service provider. And the website DNS domain name points to this hosting web-server. In a simple scenario like this when the user requests the pages (or in general we can say any content such as text pages, images, and other media), the end-user’s browser request reaches this web-server, and the web-server delivers the web-pages via HTTP Protocol.
CDN Introduction website without CDN

Local user Browser Cache: The process of page or content download is pretty straight forward in a web-browser. A web-browser will have a small local cache. So that if there is any future repetitive requests, instead each time fetching from the main website (web-server), the browser will load/render the pre-cached content directly in the browser interface if it finds that specific content already once stored earlier in its cache. This saves up a lot of traffic. Since most of the times any website will have a lot of common content, such as logos, some Java scripts, CSS Stylesheets and so on. But the only drawback is that if there is a small organization, then each user have to access the content atleast once, so that they get their browser cache stored with content. In this case it is a highly discrete or non-shared cache platform/scenario.

Local web Proxy/Caching Servers: So in a office, or any such setup, where there are N users accessing common Internet resource, we can deploy a common web proxy or caching server(s). These servers (or a server) will create a great opportunity of creating a localized common caching scenario. So in this mode assume if one user accesses a website for first time, assume few of its contents are cached in this caching server, then later that day whichever other user accesses the same content, they may receive cached content from this central caching/proxy server. This is a huge advantage. Once the cache is mature and holds enough cached contents, it will sometimes exponentially reduce the network load, and downloading repetitive data from Internet (or any network in general).

A Website via CDN Network: In this scenario, the main basic website acts much like a source or origin. It will contain the web-content but it will not serve the real end-users. Instead there is going to be a CDN Service provider, and his vast infrastructure with several distributed, so called CDN Nodes across Internet spread globally. When the end-user requests the website, it is these CDN caching nodes will actually server the content to the end users. The job of the CDN service provider is to provide a highly redundant load-sharing along with transparent/abstract infrastructure. The CDN provider will often point or assign a CDN node which is least used at that instance, also sometimes assigns dynamically a CDN Node which is geographically nearer to the end-user. Hence this reduces the download time, since it reduces the number of router hops in internet.
CDN Introduction website with CDN

A CDN Node is often a highly proprietary caching resource installed by the CDN Service provider, where when it gets a request of a content to be served from end-user browsers, it caches the pages/content from its neighboring CDN Nodes, or sometimes directly from the origin web-servers. So this will exponentially reduces the load on the origin webserver. It is like with CDN server, the load on the origin webserver is or can be reduced upto 70-80% or sometimes even more depending on the content nature and depending on static vs. dynamic content it has.

So this is how a basic CDN works, its significance and value addition for any website if it is served to users via CDN, versus served directly via single webserver (or just few redundant web-servers) without a CDN.

Apart from this there are various advantages in using a CDN within your deployments. To know more about CDN Advantages kindly read the full detailed article HERE.

Suggested Topics:

Generic CDN

Building my own CDN

💎 TOFFEE-MOCHA new bootable ISO: Download
💎 TOFFEE Data-Center Big picture and Overview: Download PDF

Recommended Topics:

Skype VOIP Data - WAN Acceleration ↗
Saturday' 13-Mar-2021

TOFFEE-DataCenter :: Features Supported ↗
Saturday' 13-Mar-2021
Here is a list of TOFFEE-DataCenter features supported. TOFFEE-DataCenter currently supports some of the important features such as loss-less network data compression, Packet Deduplication (protocols/applications supported), Application Acceleration, TCP Acceleration, dynamic MTU optimization, data packaging, hardware offload support, etc.

WAN Optimization - Animated demo of Packet Optimization in TOFFEE-DataCenter ↗
Saturday' 13-Mar-2021

TOFFEE-Mocha WAN Emulator Jitter Feature ↗
Saturday' 13-Mar-2021

TOFFEE-Mocha Documentation :: TOFFEE-Mocha-1.0.14-1-x86_64 ↗
Saturday' 13-Mar-2021

TOFFEE-DataCenter :: Optimized ISP backbone networks for countries with slowest Internet Speed ↗
Saturday' 13-Mar-2021

Streaming CDN Types ↗
Saturday' 13-Mar-2021

iPerf Network Optimization - WAN Optimization Demo ↗
Saturday' 13-Mar-2021

CDN Content Delivery Networks - Types ↗
Saturday' 13-Mar-2021

TOFFEE-Mocha WAN Emulator Jitter Feature ↗
Saturday' 13-Mar-2021

Featured Educational Video:
Watch on Youtube - [1836//1] x257 tp-link UE300 Linux Kernel Realtek Driver Codewalk rtl8153a-3 r8152 USB 3.0 to Gigabit - Part1 ↗

Introducing TOFFEE-Fudge - Network Packet Generator ↗
Saturday' 13-Mar-2021
TOFFEE Fudge is a simple intuitive Network Packet Generator which can be used to create custom test synthetic Network Packets and can be used in various applications such as networking research, network infrastructure troubleshooting, ethical hacking, as a network software development tool and so on.

TOFFEE-Mocha WAN Emulation software development - Update: 1-July-2016 ↗
Saturday' 13-Mar-2021
Today I got a feature request from Jonathan Withers. Jonathan is from a company called MultiWave Australia. He said he is able to get the TOFFEE-Mocha Raspberry Pi setup up and with that he is able to emulate geostationary satellite link. But he requested me is there a way to extend the constant packet delay from 40mS to 500mS. So as a part of his request I supported the same in the current ongoing development version of TOFFEE-Mocha.

A study on Deep Space Networks (DSN) ↗
Saturday' 13-Mar-2021
When you are dealing Deep Space Networks (DSN) one among the most challenging parts is the Interplanetary distances and communicating data across such vast distances. This is where we are not dealing with common Internet type traffic such as HTTP/FTP/VoIP/etc but it is completely different when it comes to DSN so far. So optimizing data in DSN becomes mandatory. For example if you think one of the Mars Rovers, they have used LZO lossless compression.

Demo TOFFEE-DataCenter WAN Optimization VM Test Setup ↗
Saturday' 13-Mar-2021

Watch on Youtube - [1888//1] Deep Space Communication - Episode1 - Introduction ↗

TOFFEE-DataCenter WAN Optimization software development - Update: 19-Aug-2016 ↗
Saturday' 13-Mar-2021
This is my next software development update of TOFFEE-DataCenter which I am working since past few weeks. I was very busy in implementing the core TOFFEE-DataCenter components along with prototyping, benchmarking, implementing and testing the same. However today is the first time ever I did a fresh new CLI interface for the upcoming new TOFFEE-DataCenter.

Research :: Optimization of network data (WAN Optimization) at various levels:
Network File level network data WAN Optimization

Learn Linux Systems Software and Kernel Programming:
Linux, Kernel, Networking and Systems-Software online classes

Hardware Compression and Decompression Accelerator Cards:
TOFFEE Architecture with Compression and Decompression Accelerator Card

TOFFEE-DataCenter on a Dell Server - Intel Xeon E5645 CPU:
TOFFEE-DataCenter screenshots on a Dual CPU - Intel(R) Xeon(R) CPU E5645 @ 2.40GHz - Dell Server