O projeto TOFFEE
CASADOCUMENTAÇÃOATUALIZAÇÕESVÍDEOSPESQUISADESCARREGARPATROCINADORESCONTATO


DOCUMENTATION 》 TEST CASES :: TEST RESULTS :: TOFFEE-Mocha-1.0.32 asymmetric constant packet delay feature

Here are the TOFFEE-Mocha test cases and test results of new asymmetric constant packet delay feature supported in the new TOFFEE-Mocha-1.0.32 release. Click HERE to download TOFFEE-Mocha-1.0.32-1-x86_64.tar.xz and TOFFEE-Mocha-1.0.32-1-i386.tar.xz.

Here is my test network topology:
TOFFEE-Mocha asymmetric packet delay test setup

Test case1 :: no packet delay: This is a reference test with no packet delay.
TOFFEE-Mocha-1.0.32 WAN Emulator network test tool Test case1 - no packet delay

[email protected]:~$ ping 192.168.0.1
PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=1.34 ms
64 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=1.34 ms
64 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=1.36 ms
64 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=1.43 ms
^C
--- 192.168.0.1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 1.343/1.372/1.432/0.057 ms
[email protected]:~$

Test case2 :: 1ms per packet delay: This will enable 1ms constant packet delay for all packets (i.e upstream and downstream).
TOFFEE-Mocha-1.0.32 WAN Emulator network test tool Test case2 - 1ms per packet delay

[email protected]:~$ ping 192.168.0.1
PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=3.38 ms
64 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=3.28 ms
64 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=3.49 ms
64 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=3.34 ms
^C
--- 192.168.0.1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 3.288/3.377/3.493/0.094 ms
[email protected]:~$

Test case3 :: 1ms upload alone packet delay: This will enable 1ms constant packet delay for all upstream packets alone.
TOFFEE-Mocha-1.0.32 WAN Emulator network test tool Test case3 - 1ms upload alone packet delay

[email protected]:~$ ping 192.168.0.1
PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=2.49 ms
64 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=2.51 ms
64 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=2.32 ms
64 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=2.30 ms
^C
--- 192.168.0.1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 2.300/2.408/2.515/0.108 ms
[email protected]:~$

Test case4 :: 1ms download alone packet delay: This will enable 1ms constant packet delay for all downstream packets alone.
TOFFEE-Mocha-1.0.32 WAN Emulator network test tool Test case4 - 1ms download alone packet delay

[email protected]:~$ ping 192.168.0.1
PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=2.31 ms
64 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=2.33 ms
64 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=2.41 ms
64 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=2.41 ms
^C
--- 192.168.0.1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 2.313/2.367/2.416/0.067 ms
[email protected]:~$

Test case5 :: 1ms download packet delay + 1ms per packet delay: This will enable 1ms constant packet delay for all downstream packets along with constant 1ms per-packet delay.
TOFFEE-Mocha-1.0.32 WAN Emulator network test tool Test case5 - 1ms download packet delay + 1ms per packet delay

[email protected]:~$ ping 192.168.0.1
PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=4.36 ms
64 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=4.34 ms
64 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=4.43 ms
64 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=4.46 ms
^C
--- 192.168.0.1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3004ms
rtt min/avg/max/mdev = 4.342/4.401/4.465/0.049 ms
[email protected]:~$

Test case6 :: 1ms upload packet delay + 1ms per packet delay: This will enable 1ms constant packet delay for all upstream packets along with constant 1ms per-packet delay.
TOFFEE-Mocha-1.0.32 WAN Emulator network test tool Test case6 - 1ms upload packet delay + 1ms per packet delay

[email protected]:~$ ping 192.168.0.1
PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=4.26 ms
64 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=4.46 ms
64 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=4.35 ms
64 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=4.47 ms
^C
--- 192.168.0.1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3003ms
rtt min/avg/max/mdev = 4.260/4.389/4.472/0.087 ms
[email protected]:~$

Test case7 :: 1ms upload packet delay + 1ms download packet delay + 1ms per packet delay: This will enable 1ms constant packet delay for all upstream and downstream packets along with constant 1ms per-packet delay.
TOFFEE-Mocha-1.0.32 WAN Emulator network test tool Test case7 - 1ms upload packet delay + 1ms download packet delay + 1ms per packet delay

[email protected]:~$ ping 192.168.0.1
PING 192.168.0.1 (192.168.0.1) 56(84) bytes of data.
64 bytes from 192.168.0.1: icmp_seq=1 ttl=64 time=5.26 ms
64 bytes from 192.168.0.1: icmp_seq=2 ttl=64 time=5.41 ms
64 bytes from 192.168.0.1: icmp_seq=3 ttl=64 time=5.66 ms
64 bytes from 192.168.0.1: icmp_seq=4 ttl=64 time=5.31 ms
64 bytes from 192.168.0.1: icmp_seq=5 ttl=64 time=5.37 ms
64 bytes from 192.168.0.1: icmp_seq=6 ttl=64 time=5.29 ms
64 bytes from 192.168.0.1: icmp_seq=7 ttl=64 time=5.41 ms
^C
--- 192.168.0.1 ping statistics ---
7 packets transmitted, 7 received, 0% packet loss, time 6009ms
rtt min/avg/max/mdev = 5.260/5.391/5.662/0.130 ms
[email protected]:~$



Tópicos sugeridos:


TOFFEE-Mocha - WAN Emulator


Categories

💎 TOFFEE-MOCHA new bootable ISO: Download
💎 TOFFEE Data-Center Big picture and Overview: Download PDF


Tópicos recomendados:

TOFFEE (and TOFFEE-DataCenter) deployment with web-proxy cache ↗
Saturday' 13-Mar-2021
If you want to deploy TOFFEE along with a web-proxy cache (such as Squid Proxy) you can deploy the same as shown below. TOFFEE does not cache files. TOFFEE does packet level network optimization. So if you want caching your web content you can use transparent mode web-proxy cache intercepting your WAN links. A web-proxy may reduce amount of data being processed (optimized) within these TOFFEE devices and so reduce the CPU overheads and improve its performance.

Power consumption of my Home Lab devices for research ↗
Saturday' 13-Mar-2021
Here is my power-consumption measurements of various devices deployed within my home lab. I measured via my kill-a-watt sort of power-meter which is fairly reliable and accurate. I checked its accuracy with various standard load such as Philips LED laps and other constant power-consuming devices to make sure that the power-meter is precise.

Communication data network standards and data transfer speeds :: Chart ↗
Saturday' 13-Mar-2021
Here is a complete chart comprising popular communication data network standards and their respective transfer rates. I hope this reference chart will help network engineers and network software developers while performing networking tests and experiments, building WAN/network products, building WAN simulated networks of a specific standard and so on. This may also helps us to track technological advancements of communication data networks.

TOFFEE-DataCenter a TOFFEE variant for Data Center applications ↗
Saturday' 13-Mar-2021

TOFFEE-DataCenter - First Live Demo and software development - Update: 26-Aug-2016 ↗
Saturday' 13-Mar-2021
Today I have done a test setup so that I can able to connect my Android Samsung Tab via TOFFEE DataCenter. Below is my complete test topology of my setup. For demo (and research/development) context I configured TOFFEE DataCenter in engineering debug mode. So I do not need two devices for this purpose.

Building my own CDN - Finally Completed - Update: 17-Dec-2017 ↗
Saturday' 13-Mar-2021
Today I finally completed building my own private CDN. As I discussed so far in my earlier topics (Building my own CDN), I want to custom build the same step-by-step from scratch. And I don't want to for now use/buy third-party CDN subscriptions from Akamai, CloudFlare, Limelight, etc as I discussed earlier.

Assista no Youtube - [1852//1] Deep Space Communication - Episode1 - Introduction ↗


TEST CASES :: TEST RESULTS :: Raspberry Pi WAN Emulator TOFFEE-Mocha-1.0.14-1-rpi2 ↗
Saturday' 13-Mar-2021

Demo TOFFEE-DataCenter WAN Optimization packaging feature ↗
Saturday' 13-Mar-2021

Demo TOFFEE_DataCenter WAN Optimization VM (in VirtualBox) Test Setup ↗
Saturday' 13-Mar-2021
Demo TOFFEE_DataCenter WAN Optimization VM (in VirtualBox) Test Setup

TEST CASES :: TEST RESULTS :: TOFFEE-Mocha-1.0.14 Development version ↗
Saturday' 13-Mar-2021



Featured Educational Video:
Assista no Youtube - [431//1] 0x1d3 Who gets Laid off (or Fired) during a recession ? #TheLinuxChannel #KiranKankipati ↗

TOFFEE-Mocha WAN Emulation software development - Update: 15-July-2016 ↗
Saturday' 13-Mar-2021
Today I completed doing all the changes which are meant for the new upcoming TOFFEE-Mocha release. I have increased the resolution and the range of all factor variables. Instead 1 to 10 range now they have a range of 1 to 30. Unlike before the value 1 means it is lot more intense (or in some cases less intense) and the uppermost value 30 means lot less intense (or in some cases lot intense).

TOFFEE-DataCenter Live Demo with Clash of Clans game data - 30-Aug-2016 ↗
Saturday' 13-Mar-2021
Today I have done a test setup so that I can able to connect my Android Samsung Tab via TOFFEE DataCenter. Below is my complete test topology of my setup. For demo (and research/development) context I configured TOFFEE DataCenter in engineering debug mode. So that I do not need two devices for this purpose.

TOFFEE-DataCenter - First Live Demo and software development - Update: 26-Aug-2016 ↗
Saturday' 13-Mar-2021
Today I have done a test setup so that I can able to connect my Android Samsung Tab via TOFFEE DataCenter. Below is my complete test topology of my setup. For demo (and research/development) context I configured TOFFEE DataCenter in engineering debug mode. So I do not need two devices for this purpose.

TOFFEE-DataCenter Download :: TOFFEE-DATACENTER-1.2.2-1-portable ↗
Saturday' 13-Mar-2021




TOFFEE-DataCenter - First Live Demo and software development - Update: 26-Aug-2016 ↗
Saturday' 13-Mar-2021
Today I have done a test setup so that I can able to connect my Android Samsung Tab via TOFFEE DataCenter. Below is my complete test topology of my setup. For demo (and research/development) context I configured TOFFEE DataCenter in engineering debug mode. So I do not need two devices for this purpose.



Research :: Optimization of network data (WAN Optimization) at various levels:
Network File level network data WAN Optimization


Learn Linux Systems Software and Kernel Programming:
Linux, Kernel, Networking and Systems-Software online classes


Hardware Compression and Decompression Accelerator Cards:
TOFFEE Architecture with Compression and Decompression Accelerator Card [CDN]


TOFFEE-DataCenter on a Dell Server - Intel Xeon E5645 CPU:
TOFFEE-DataCenter screenshots on a Dual CPU - Intel(R) Xeon(R) CPU E5645 @ 2.40GHz - Dell Server